如何修复简单 GA (Python) 中的过早收敛?
昨天我开始探索遗传算法,当我结束了一些基本理论时,我尝试在Python上编写简单的遗传算法,来解决丢番图方程。我是Python和GA的新手,所以请不要严格判断我的代码。
问题
由于过早收敛,我无法得到任何结果(有一些无返回点(n-population),population[ n] == Population[n+i],其中i是任意整数,即使随机变异元素也无法改变这一点,世代退化得非常快)
GA使用交叉来繁殖,并加权选择父母。< /强>
- Q1:我的设计是否存在任何设计错误? 代码(如下)?
- Q1.2:我需要添加精英主义吗?
- Q1.3:我需要改变品种吗 逻辑?
- Q2:是否真的需要深拷贝?
代码:
# -*- coding: utf-8 -*-
from random import randint
from copy import deepcopy
from math import floor
import random
class Organism:
#initiate
def __init__(self, alleles, fitness, likelihood):
self.alleles = alleles
self.fitness = fitness
self.likelihood = likelihood
self.result = 0
def __unicode__(self):
return '%s [%s - %s]' % (self.alleles, self.fitness, self.likelihood)
class CDiophantine:
def __init__(self, coefficients, result):
self.coefficients = coefficients
self.result = result
maxPopulation = 40
organisms = []
def GetGene (self,i):
return self.organisms[i]
def OrganismFitness (self,gene):
gene.result = 0
for i in range (0, len(self.coefficients)):
gene.result += self.coefficients[i]*gene.alleles[i]
gene.fitness = abs(gene.result - self.result)
return gene.fitness
def Fitness (self):
for organism in self.organisms:
organism.fitness = self.OrganismFitness(organism)
if organism.fitness == 0:
return organism
return None
def MultiplyFitness (self):
coefficientSum = 0
for organism in self.organisms:
coefficientSum += 1/float(organism.fitness)
return coefficientSum
def GenerateLikelihoods (self):
last = 0
multiplyFitness = self.MultiplyFitness()
for organism in self.organisms:
last = ((1/float(organism.fitness)/multiplyFitness)*100)
#print '1/%s/%s*100 - %s' % (organism.fitness, multiplyFitness, last)
organism.likelihood = last
def Breed (self, parentOne, parentTwo):
crossover = randint (1,len(self.coefficients)-1)
child = deepcopy(parentOne)
initial = 0
final = len(parentOne.alleles) - 1
if randint (1,100) < 50:
father = parentOne
mother = parentTwo
else:
father = parentTwo
mother = parentOne
child.alleles = mother.alleles[:crossover] + father.alleles[crossover:]
if randint (1,100) < 5:
for i in range(initial,final):
child.alleles[i] = randint (0,self.result)
return child
def CreateNewOrganisms (self):
#generating new population
tempPopulation = []
for _ in self.organisms:
iterations = 0
father = deepcopy(self.organisms[0])
mother = deepcopy(self.organisms[1])
while father.alleles == mother.alleles:
father = self.WeightedChoice()
mother = self.WeightedChoice()
iterations+=1
if iterations > 35:
break
kid = self.Breed(father,mother)
tempPopulation.append(kid)
self.organisms = tempPopulation
def WeightedChoice (self):
list = []
for organism in self.organisms:
list.append((organism.likelihood,organism))
list = sorted((random.random() * x[0], x[1]) for x in list)
return list[-1][1]
def AverageFitness (self):
sum = 0
for organism in self.organisms:
sum += organism.fitness
return float(sum)/len(self.organisms)
def AverageLikelihoods (self):
sum = 0
for organism in self.organisms:
sum += organism.likelihood
return sum/len(self.organisms)
def Solve (self):
solution = None
for i in range(0,self.maxPopulation):
alleles = []
#
for j in range(0, len(self.coefficients)):
alleles.append(randint(0, self.result))
self.organisms.append(Organism(alleles,0,0))
solution = self.Fitness()
if solution:
return solution.alleles
iterations = 0
while not solution and iterations <3000:
self.GenerateLikelihoods()
self.CreateNewOrganisms()
solution = self.Fitness()
if solution:
print 'SOLUTION FOUND IN %s ITERATIONS' % iterations
return solution.alleles
iterations += 1
return -1
if __name__ == "__main__":
diophantine = CDiophantine ([1,2,3,4],30)
#cProfile.run('diophantine.Solve()')
print diophantine.Solve()
我尝试更改品种和加权随机选择逻辑,但没有结果。这个 GA 应该是工作,我不知道出了什么问题。 我知道 Python 上有一些 GA 库,我现在正在尝试理解它们 - 似乎它们对我来说相当复杂。抱歉,有错误,英语不是我的母语。感谢您的理解。
死灵更新: 以格雷码存储染色体,而不是整数。
Yesterday i started exploring the genetic algorithms, and when i ended up with some basic theory, i tried to write simple GA on Python, that solves Diophantine equation. I'm new to Python and GAs, so please, don't judge my code strictly.
Problem
I cant get any result due to premature convergence (there is some no-return point (n-population), population[n] == population[n+i], where i is any integer. even the random mutatuion element cant change this, the generation is degradating very quickly)
GA is using crossover to breed, and weighted choice of parents.
- Q1: Is there any design mistakes in my
code (below)? - Q1.2: Do i need to add elitism?
- Q1.3: Do i need to change breed
logic? - Q2: Is there realy needed deep copy?
Code:
# -*- coding: utf-8 -*-
from random import randint
from copy import deepcopy
from math import floor
import random
class Organism:
#initiate
def __init__(self, alleles, fitness, likelihood):
self.alleles = alleles
self.fitness = fitness
self.likelihood = likelihood
self.result = 0
def __unicode__(self):
return '%s [%s - %s]' % (self.alleles, self.fitness, self.likelihood)
class CDiophantine:
def __init__(self, coefficients, result):
self.coefficients = coefficients
self.result = result
maxPopulation = 40
organisms = []
def GetGene (self,i):
return self.organisms[i]
def OrganismFitness (self,gene):
gene.result = 0
for i in range (0, len(self.coefficients)):
gene.result += self.coefficients[i]*gene.alleles[i]
gene.fitness = abs(gene.result - self.result)
return gene.fitness
def Fitness (self):
for organism in self.organisms:
organism.fitness = self.OrganismFitness(organism)
if organism.fitness == 0:
return organism
return None
def MultiplyFitness (self):
coefficientSum = 0
for organism in self.organisms:
coefficientSum += 1/float(organism.fitness)
return coefficientSum
def GenerateLikelihoods (self):
last = 0
multiplyFitness = self.MultiplyFitness()
for organism in self.organisms:
last = ((1/float(organism.fitness)/multiplyFitness)*100)
#print '1/%s/%s*100 - %s' % (organism.fitness, multiplyFitness, last)
organism.likelihood = last
def Breed (self, parentOne, parentTwo):
crossover = randint (1,len(self.coefficients)-1)
child = deepcopy(parentOne)
initial = 0
final = len(parentOne.alleles) - 1
if randint (1,100) < 50:
father = parentOne
mother = parentTwo
else:
father = parentTwo
mother = parentOne
child.alleles = mother.alleles[:crossover] + father.alleles[crossover:]
if randint (1,100) < 5:
for i in range(initial,final):
child.alleles[i] = randint (0,self.result)
return child
def CreateNewOrganisms (self):
#generating new population
tempPopulation = []
for _ in self.organisms:
iterations = 0
father = deepcopy(self.organisms[0])
mother = deepcopy(self.organisms[1])
while father.alleles == mother.alleles:
father = self.WeightedChoice()
mother = self.WeightedChoice()
iterations+=1
if iterations > 35:
break
kid = self.Breed(father,mother)
tempPopulation.append(kid)
self.organisms = tempPopulation
def WeightedChoice (self):
list = []
for organism in self.organisms:
list.append((organism.likelihood,organism))
list = sorted((random.random() * x[0], x[1]) for x in list)
return list[-1][1]
def AverageFitness (self):
sum = 0
for organism in self.organisms:
sum += organism.fitness
return float(sum)/len(self.organisms)
def AverageLikelihoods (self):
sum = 0
for organism in self.organisms:
sum += organism.likelihood
return sum/len(self.organisms)
def Solve (self):
solution = None
for i in range(0,self.maxPopulation):
alleles = []
#
for j in range(0, len(self.coefficients)):
alleles.append(randint(0, self.result))
self.organisms.append(Organism(alleles,0,0))
solution = self.Fitness()
if solution:
return solution.alleles
iterations = 0
while not solution and iterations <3000:
self.GenerateLikelihoods()
self.CreateNewOrganisms()
solution = self.Fitness()
if solution:
print 'SOLUTION FOUND IN %s ITERATIONS' % iterations
return solution.alleles
iterations += 1
return -1
if __name__ == "__main__":
diophantine = CDiophantine ([1,2,3,4],30)
#cProfile.run('diophantine.Solve()')
print diophantine.Solve()
I tried to change breed and weighted random choice logic but with no results. This GA supposed to be work, i dont know, what's wrong.
I know that there are some GA libraries on Python, i'm trying to understand them at the moment - it seems that they are quite complex to me. Sorry for mistakes, english is not my native language. Thank you for your understanding.
NECROUPDATE:
Store chromosomes in Gray Code, not in integer.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
轻微的逻辑错误:parentTwo 是父亲的可能性比母亲的可能性稍大一些。偶数赔率将为 randint (1,100) <= 50,而不是 randint (1,100) <= 50。 50. 不会是造成这里问题的原因。
人口规模如此之小,200-300代就能解决问题并不奇怪。如果增加人口,就会减少所需的世代。
注意:我发现了一些几年前为解决类似问题而编写的旧代码。它是 C 语言,并使用锦标赛选择,但也许它可以给你一些想法:
Slight logic error: parentTwo is slightly more likely to be the father than the mother. Even odds would be randint (1,100) <= 50, not randint (1,100) < 50. Won't be what's causing the issue here.
With such a small population size, 200-300 generations is not surprising to solve the problem. If you increase the population, it should reduce the generations required.
Note: I found some old code that I wrote a few years ago for solving a similar problem. It's in C, and uses tournament selection, but perhaps it can give you a few ideas: