如何通过两张图像了解机器人在空间中的位置
我尝试教我的机器人在它不知道的密闭空间中行走。机器人有一些传感器。它必须到达空间中的某个点并找到返回起始位置的方法。
这个任务与机器人探索算法非常相似,但是受到腿部物理限制,他需要在空间中行走开始认为他站在一个位置(x1,y1),但实际上他站在另一个位置(x2,y2)。
所以,他无法回到现实世界的起始位置。我想使用一种算法来比较位置(x1,y1)的可见图片和位置(x2,y2)的可见图片来纠正运动误差,但我不知道如何实现我的想法。
在我尝试解决这个问题之前,有人能给我一些如何实现这个算法的提示吗?
I try to teach my robot to walk in a confined space that it doesn't know. The robot has some sensors. It must to go to some point in the space and find the way to return to the start position.
This task very similar to Robot exploration algorithm, but by physical limitations of his legs, walking through the space he starts to think that he stands in one position (x1, y1), but in reality he stands in another position (x2, y2).
So, he can't return back to the start position in real world. I want to use an algorithm that compares the visible picture in position (x1, y1) and the visible picture in position (x2, y2) to correct the error of movement, but I don't know how to realize my idea.
Before I dive into an attempt to solve this problem, could anybody give me some hints how to realize this algorithm?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
图像是如何表示的?它实际上只是从相机传感器输入的原始位图吗?如果是这样,那么你可能会遇到麻烦,因为这个问题非常困难。这个特定问题的名称称为同时定位和建图(或简称 SLAM):
http://en。 wikipedia.org/wiki/Simultaneous_localization_and_mapping
一般来说,解决这个问题相当困难,并且如果不了解更多关于您所拥有的数据类型和处理限制的信息,就不可能回答你的问题。
How is the image represented? Is it literally just a raw bitmap inputted from a camera sensor? If so, then you may be in trouble because that problem is very difficult. The name for this particular problem is called simultaneous localization and mapping (or SLAM for short):
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
Solving this is pretty difficult in general, and without knowing more about what kind of data and what sort of processing constraints you have, it would be impossible to answer your question.
有两个问题:
你可以注意到这是一个先有鸡还是先有蛋的问题。
希望您能拥有SLAM(同步定位和地图绘制)!
There are two problems :
You can notice how it is a chicken-and-egg problem.
Hopefully, for you, there is SLAM (Simultaneous localization and mapping)!