我可以分解大规模的相关矩阵吗?
相关矩阵太大(50000×50000),以至于计算我想要的东西效率不高。我想做的是将其分解为组并将每个组视为单独的相关矩阵。但是,如何处理这些较小的相关矩阵之间的依赖性?我一整天都在网上研究,但没有任何结果。应该有一些算法与像这样的大相关矩阵的近似相关,对吧?
the correlation matrix is so large (50000by50000) that it is not efficient in calculating what I want. What I want to do is to break it down to groups and treat each as separate correlation matrices. However, how do I deal with the dependence between those smaller correlation matrices? I have been researching online all day but nothing comes up. There should be some algorithm out there that is related to the approximation of large correlation matrices like this, right?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
即使 4 x 4 相关矩阵也对错误很敏感。无论如何,这里有一些可能有帮助的链接:
http:// /www.oxford-man.ox.ac.uk/documents/papers/2011OMI08_Sheppard.pdf
http://www.kevinsheppard.com/images/4/47/Chapter8.pdf
http://arxiv.org/PS_cache/arxiv/pdf/1009/1009.5331v1.pdf
http://cran.r-project.org/web/packages/tawny/index.html
http://www.rinfinance.com/RinFinance2009/presentations/yollin_slides.pdf
http://nurometic.com/quantitative-finance/tawny/portfolio-optimization-with-tawny
http://quantivity.wordpress.com/2011/04/17/minimum-variance-portfolios/
Even a 4 x 4 correlation matrix is sensitive to errors. In any case, here are some links that might help:
http://www.oxford-man.ox.ac.uk/documents/papers/2011OMI08_Sheppard.pdf
http://www.kevinsheppard.com/images/4/47/Chapter8.pdf
http://arxiv.org/PS_cache/arxiv/pdf/1009/1009.5331v1.pdf
http://cran.r-project.org/web/packages/tawny/index.html
http://www.rinfinance.com/RinFinance2009/presentations/yollin_slides.pdf
http://nurometic.com/quantitative-finance/tawny/portfolio-optimization-with-tawny
http://quantivity.wordpress.com/2011/04/17/minimum-variance-portfolios/