SSIS 有多少个核心?
我对 SSIS 中的复杂转换进行了概念验证。我现在有了在虚拟机中创建的 POC 的性能指标,该虚拟机具有 1 GB 内存,分配了 1 个核心。 SSIS 转换都是基于文件的(源和目标)。
现在我想使用这个指标在生产环境中选择正确数量的内核和内存。
如果我知道每天要转换的文件量和每天要转换的文件大小总量,那么确定用于生产的正确内核和内存数量的正确策略是什么?
(编辑)想想每天 100 GB 和 5000 个文件的总传输大小!
I did a proof of concept for a complex transformation in SSIS. I have performance metrics now for this POC that I created in a virtual machine, with 1 gig memory, 1 core assigned. The SSIS transformations are all file based (source and target).
Now I want to use this metric for choosing the right amount of cores and memory in production environment.
What would be the right strategy to determine the right amount of cores and memory for production if I know the amount of files per day and the total amount of file size per day to be transformed ?
(edit) Think about total transfer sizes of 100 gigabyte and 5000 files per day!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
您还需要进行另外两个基准测试:2 GB 内存,1 核和 1 GB 内存,双核。如果没有更多的数据点,很难对相当小的环境进行快照进行推断。
另外,如果只有 1GB RAM,您还需要确保服务器不会耗尽内存并分页到磁盘(这会在一定程度上扭曲您的数据,因为一切都变得依赖于磁盘访问 - 并且考虑到您已经在阅读无论如何从磁盘...)。因此,请确保您也知道那里发生了什么。
SSIS 尝试在内存中尽可能多地缓冲以提高速度,因此更多的内存总是好的:-) 更大的问题是额外的内核会给您带来什么好处。
You'd want to do two other benchmarks: 2 GB mem, 1 core and 1 GB mem, dual core. Taking a snapshot of a fairly tiny environment is difficult to extrapolate without a couple more datapoints.
Also, with only 1GB RAM you'll also want to make sure the server isn't also running out of memory and paging to disk (which will skew your figures somewhat as everything becomes reliant on disk access - and given you're already reading from disk anyway...). So make sure you know what's happening there as well.
SSIS tries to buffer as much as it can in memory for speed, so more memory is always good :-) The bigger question is what benefit extra cores will give you.
有许多性能领域。一是核心数量。拥有的核心越多,可以完成的并行工作就越多。当然,这也取决于您如何构建软件包。某些对象是同步的,其他对象是异步的。内存也是一个因素,但仅限于 100MB/数据流组件。
There are a number of areas for performance. One is the number of cores. The more cores you have the more parallel work that can be done. This of course is also dependent upon how you build your package. Certain objects are synchronous others are asynchronous. Memory is also a factor, but it is limited to 100MB/dataflow component.