Python - 生成 string.ascii_lowercase 的混乱

发布于 2024-11-15 08:48:50 字数 669 浏览 3 评论 0原文

我在网上找到了一些在 Python 中生成混乱的算法,但它们的复杂度都是指数级的,因此我无法让它们与一组 26 个元素(字母表)收敛!

所以我试图找到一种方法来改进以下代码(来源 此处):

def derangement(vs):
    l = [None for x in vs]
    sol = set()
    sol.add(tuple(l))
    for v in vs:
        sol1 = set()
        for s in sol:
            for (i, v1) in enumerate(s):
                if not v1 and v != vs[i]:
                    s1 = list(s)
                    s1[i] = v
                    sol1.add(tuple(s1))
        sol = sol1
    return list(sol)

如果有人好奇,这是一个暴力替代密码求解器。我想看看暴力破解密码需要多长时间!

I have found some algorithms online to generate derangements in Python but they're all exponential in complexity and as a result I can't get them to converge with a set of 26 elements (the alphabet)!

So I'm trying to find a way to improve the following code (source here):

def derangement(vs):
    l = [None for x in vs]
    sol = set()
    sol.add(tuple(l))
    for v in vs:
        sol1 = set()
        for s in sol:
            for (i, v1) in enumerate(s):
                if not v1 and v != vs[i]:
                    s1 = list(s)
                    s1[i] = v
                    sol1.add(tuple(s1))
        sol = sol1
    return list(sol)

If anyone is curious this is for a bruteforce substitution cipher solver. I'm trying to see how long it takes to bruteforce a cipher!

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

凉薄对峙 2024-11-22 08:48:50

由于排列算法是 Ω(n!) ,没有什么能让你的代码收敛。这可能会更快,但这对于如此复杂的事情来说没有任何意义:

import itertools
def derangement(x):
    p = itertools.permutations(x)
    return (i for i in p if not any(i[k] == x[k] for k in range(len(x))))

它是一个惰性迭代器。如果您需要所有值(我怀疑您需要),只需 list() 即可

As permutation algorithms are Ω(n!) nothing will make your code converge. This may be faster, but that means nothing for things of that complexity:

import itertools
def derangement(x):
    p = itertools.permutations(x)
    return (i for i in p if not any(i[k] == x[k] for k in range(len(x))))

It's a lazy iterator. If you need all values (I doubt you need) just list() it

一袭水袖舞倾城 2024-11-22 08:48:50

不一定,这取决于您使用的密码。如果您使用的是凯撒密码(我确定您不是),那么您只需尝试所有 26 个密码即可!排列,然后用真实的单词找到一个*(的),但我很确定你的意思是维吉尼亚密码,在这种情况下,你采取所有第一组排列,并将它们放在类似派系的行中,然后找到这些排列,然后交叉检查字典中的单词,然后你可能会得到一长串可能的消息,你必须对这些消息进行排序,找出有意义的消息。

Not necessarily, it depends on the cypher you're using. If you're using a Caesar cypher which I'm sure you aren't, you only have to try all 26! Permutations and then find the one*('s) with real words but I'm pretty sure you mean for a vigenere cypher in which case you take all of the first set of permutations and you lay those in rows of a similar faction and find those permutations and then cross check for dictionary words and then you'd probably get a very long list of possible messages and you'd have to sort through those for one that made sense.

何以心动 2024-11-22 08:48:50

只需要注意一下 26 个项目的混乱数量有多大:使用 SymPy 可以计算 26 个项目的混乱数量为 26 的次阶乘 (!26)

>>> subfactorial(26)
148362637348470135821287825
>>> round(log(_,2))
87

所以大约有 2^87 可能出现的字母顺序混乱。 此处有一些用于计算随机混乱的例程以及一种无需存储即可生成连续混乱的方法它们都按照上述初始问题中引用的例程存储在内存中。

Just a note about how vast the number of derangement of 26 items is: using SymPy one can calculate the number of derangements of 26 items to be the subfactorial of 26 (!26)

>>> subfactorial(26)
148362637348470135821287825
>>> round(log(_,2))
87

So there are about 2^87 derangements of the alphabet that are possible. There are some routines here for computing random derangements and a method of generating successive derangements without storing them all in memory as the routine cited in the intitial question above.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文