与 c++ 的结果存在相当大的差异和 fortran 进行相同的计算
我正在将 FORTRAN 程序翻译为 CUDA。
当我翻译一个子程序时,我发现结果差异很大,从分数的第三位开始!我读到它们确实有所不同(我读到差异相对来说非常小)。不知道程序有没有问题。所以我也用 C++ 编译了代码,但得到了与 CUDA 相同的结果。我发布了这两个代码(C++ 和 FORTRAN)。 请检查。
FORTRAN 代码(原始)
PROGRAM MAIN
IMPLICIT REAL(A-H,O-Z)
parameter (nda=3,nda3=nda*3,ND05=3)
c INCLUDE 'SIZES'
C
C CALCULATE LENNARD-JONES POTENTIAL ENERGY DERIVATIVES
C
COMMON/QPDOT/Q(NDA3),PDOT(NDA3)
COMMON/COORS/R(NDA*(NDA+1)/2)
COMMON/LENJB/ALJ(ND05),BLJ(ND05),CLJ(ND05),N5J(ND05),N5K(ND05),
*NREP(ND05),MREP(ND05),LREP(ND05)
DIMENSION JKA(ND05),RNA(ND05),RMB(ND05),RLC(ND05)
common/ind/natoms,i3n
831 FORMAT(' NJ=',I4,' NK=',I4,' ALJ=',1PE12.5,' BLJ=',E12.5,
*' CLJ=',E12.5,' NREP=',I4,' MREP=',I4,' LREP=',I4)
815 FORMAT(/)
read*,natoms
read*,nlj
i3n=natoms*3
c terms for calcluations, N5J & N5K are indices (N5K > N5J)
c ALJ, BLJ & CLJ are powers for generalized LENNARD-JONES potential.
DO 10 I=1,NLJ
READ(5,*)N5J(I),N5K(I),NREP(I),MREP(I),LREP(I),
* ALJ(I),BLJ(I),CLJ(I)
WRITE(6,831)N5J(I),N5K(I),ALJ(I),BLJ(I),CLJ(I),
* NREP(I),MREP(I),LREP(I)
WRITE(6,815)
10 continue
C
read(5,*)(q(i),i=1,i3n)
do 30 i=1,i3n
print*,'q (',i,') = ',q(i)
30 continue
DO 40 MN=1,i3n
PDOT(MN)=0.0
40 continue
c setting zero values for pdot, which is force
IF (NLJ.NE.0) THEN
CALL LENJ(1,NLJ)
ENDIF
end
SUBROUTINE LENJ(INL,LNL)
IMPLICIT REAL (A-H,O-Z)
parameter (nda=3,nda3=nda*3,ND05=3)
C CALCULATE LENNARD-JONES POTENTIAL ENERGY DERIVATIVES
C
COMMON/QPDOT/Q(NDA3),PDOT(NDA3)
COMMON/COORS/R(NDA*(NDA+1)/2)
COMMON/LENJB/ALJ(ND05),BLJ(ND05),CLJ(ND05),N5J(ND05),N5K(ND05),
*NREP(ND05),MREP(ND05),LREP(ND05)
DIMENSION JKA(ND05),RNA(ND05),RMB(ND05),RLC(ND05)
LOGICAL FIRST
DATA FIRST/.TRUE./
save FIRST,JKA,RNA,RMB,RLC
common/ind/natoms,i3n
IF (FIRST) THEN
DO NL=INL,LNL
JKA(NL)=ISHFT((N5J(NL)-1)*(2*NATOMS-N5J(NL)),-1)+N5K(NL)
* -N5J(NL)
c to avoid recounting
RNA(NL)=-NREP(NL)*ALJ(NL)
RMB(NL)=-MREP(NL)*BLJ(NL)
RLC(NL)=-LREP(NL)*CLJ(NL)
ENDDO
C
FIRST=.FALSE.
ENDIF
C
C CODE FOR GENERAL LENNARD-JONES
C
DO NL=INL,LNL
J3=3*N5J(NL)
J2=J3-1
J1=J2-1
K3=3*N5K(NL)
K2=K3-1
K1=K2-1
c since each atom is represented by 3 coordinates in space, indices above are used to point for a step of three.
JK=JKA(NL)
T1=Q(K1)-Q(J1)
T2=Q(K2)-Q(J2)
T3=Q(K3)-Q(J3)
R(JK)=SQRT(T1*T1+T2*T2+T3*T3)
c calculating the distance
RRJK=1.0/R(JK)
DUM1=RNA(NL)*RRJK**(2+NREP(NL))
DUM1=DUM1+RMB(NL)*RRJK**(MREP(NL)+2)
DUM1=DUM1+RLC(NL)*RRJK**(LREP(NL)+2)
c adding each terms
TDUM1=DUM1*T1
TDUM2=DUM1*T2
TDUM3=DUM1*T3
PDOT(K1)=PDOT(K1)+TDUM1
PDOT(K2)=PDOT(K2)+TDUM2
PDOT(K3)=PDOT(K3)+TDUM3
PDOT(J1)=PDOT(J1)-TDUM1
PDOT(J2)=PDOT(J2)-TDUM2
PDOT(J3)=PDOT(J3)-TDUM3
c final forces.
ENDDO
print*,'...............'
do i=1,i3n
print*,'i = ',i ,', dvdq = ',pdot(i)
enddo
C N5J(I), N5K(I), NREP(I), MREP(I), LREP(I), ALJ(I), BLJ(I) and CLJ(I) for I = 1, NLJ.
C This is information for the generalized Lennard-Jones potentials.
C N5J and N5K are the atoms with N5K greater than N5J.
C NREP, MREP, and LREP are the powers in the potential energy expression.
C If a power equals zero the appropriate term is skipped in the calculations.
return
END
C++ 代码
#include<iostream>
#include<fstream>
#include<math.h>
#include<stdio.h>
#include<stdlib.h>
using namespace std;
void lenjones(int NATOMS, int* N5J, int* N5K, int* NREP, int* MREP, int* LREP, float* ALJ, float* BLJ, float* CLJ, int NLJ,float* Q, float* PDOT){
size_t NLJF = NLJ*sizeof(float);
size_t NLJI = NLJ*sizeof(float);
float* RMB = (float*)malloc(NLJF);
float* RLC = (float*)malloc(NLJF);
float* RNA = (float*)malloc(NLJF);
int *JKA=(int*)malloc(NLJI);
for (int NL=0; NL < NLJ; NL++){
JKA[NL]= (((N5J[NL]-1)*((2*NATOMS)-N5J[NL]))>> 1) +N5K[NL]-N5J[NL];
RNA[NL]=-NREP[NL]*ALJ[NL];
RMB[NL]=-MREP[NL]*BLJ[NL];
RLC[NL]=-LREP[NL]*CLJ[NL];
}
int J3,K3;
float T1,T2,T3;
float TDUM1,TDUM2,TDUM3,DUM;
size_t RRS = (NATOMS*(NATOMS+1)/2)*sizeof(float);
float* RR = (float*)malloc(RRS);
int JK;
for (int NL=0; NL < NLJ; NL++){
J3=(3*N5J[NL])-1;
K3=(3*N5K[NL])-1;
T1=Q[K3-2]-Q[J3-2];
T2=Q[K3-1]-Q[J3-1];
T3=Q[K3]-Q[J3];
JK=JKA[NL]-1;
RR[JK]=sqrtf((T1*T1)+(T2*T2)+(T3*T3));
RR[JK]=1/RR[JK];
DUM=(RNA[NL]*powf(RR[JK],2+NREP[NL]));
DUM+=(RMB[NL]*powf(RR[JK],MREP[NL]+2));
DUM+=(RLC[NL]*powf(RR[JK],LREP[NL]+2));
TDUM1=T1*DUM;
TDUM2=T2*DUM;
TDUM3=T3*DUM;
PDOT[K3-2]=PDOT[K3-2]+TDUM1;
PDOT[K3-1]=PDOT[K3-1]+TDUM2;
PDOT[K3]=PDOT[K3]+TDUM3;
PDOT[J3-2]=PDOT[J3-2]-TDUM1;
PDOT[J3-1]=PDOT[J3-1]-TDUM2;
PDOT[J3]=PDOT[J3]-TDUM3;
}
}
//=========================================
int main(){
int NATOMS,NDA3,ND05;
scanf("%d %d", &NATOMS, &ND05);
printf("\n");
NDA3=3*NATOMS;
size_t QPDOT = NDA3*sizeof(float);
float* h_Q = (float*)malloc(QPDOT);
float* h_PDOT = (float*)malloc(QPDOT);
size_t NLJ = ND05*sizeof(float);
float* h_ALJ = (float*)malloc(NLJ);
float* h_BLJ = (float*)malloc(NLJ);
float* h_CLJ = (float*)malloc(NLJ);
size_t NLJ_i = ND05*sizeof(int);
int* h_LREP = (int*)malloc(NLJ_i);
int* h_MREP = (int*)malloc(NLJ_i);
int* h_NREP = (int*)malloc(NLJ_i);
int* h_N5J = (int*)malloc(NLJ_i);
int* h_N5K = (int*)malloc(NLJ_i);
int* h_JKA = (int*)malloc(NLJ_i);
for (int i=0; i< ND05; i++){
cin >> h_N5J[i] >> h_N5K[i] >> h_NREP[i] >> h_MREP[i] >> h_LREP[i] >> h_ALJ[i] >> h_BLJ[i] >> h_CLJ[i];
}
for (int i=0; i<NDA3; i++){
scanf("%f", &h_Q[i]);
}
for (int i=0; i<NDA3; i++){
h_PDOT[i]=0;
}
lenjones(NATOMS, &h_N5J[0], &h_N5K[0], &h_NREP[0], &h_MREP[0], &h_LREP[0], &h_ALJ[0], &h_BLJ[0], &h_CLJ[0], ND05, &h_Q[0], &h_PDOT[0]);
cout << "i " << "Q[i] " << "PDOT[i]" << endl;
for (int i=0; i<NDA3; i++){
printf("%d %e %le \n" , i, h_Q[i], h_PDOT[i]);
}
}
I am translating a FORTRAN program to CUDA.
When I translated one subroutine I found that results vary considerably, starting from the 3rd digit in the fraction! I've read that they do differ (I've read that the difference would be very small relatively). I don't know if there's anything wrong in the program. So I compiled the code in C++ too, but to get the same result as in CUDA. I am posting both the codes (C++ and FORTRAN).
pls check.
FORTRAN CODE (ORIGINAL)
PROGRAM MAIN
IMPLICIT REAL(A-H,O-Z)
parameter (nda=3,nda3=nda*3,ND05=3)
c INCLUDE 'SIZES'
C
C CALCULATE LENNARD-JONES POTENTIAL ENERGY DERIVATIVES
C
COMMON/QPDOT/Q(NDA3),PDOT(NDA3)
COMMON/COORS/R(NDA*(NDA+1)/2)
COMMON/LENJB/ALJ(ND05),BLJ(ND05),CLJ(ND05),N5J(ND05),N5K(ND05),
*NREP(ND05),MREP(ND05),LREP(ND05)
DIMENSION JKA(ND05),RNA(ND05),RMB(ND05),RLC(ND05)
common/ind/natoms,i3n
831 FORMAT(' NJ=',I4,' NK=',I4,' ALJ=',1PE12.5,' BLJ=',E12.5,
*' CLJ=',E12.5,' NREP=',I4,' MREP=',I4,' LREP=',I4)
815 FORMAT(/)
read*,natoms
read*,nlj
i3n=natoms*3
c terms for calcluations, N5J & N5K are indices (N5K > N5J)
c ALJ, BLJ & CLJ are powers for generalized LENNARD-JONES potential.
DO 10 I=1,NLJ
READ(5,*)N5J(I),N5K(I),NREP(I),MREP(I),LREP(I),
* ALJ(I),BLJ(I),CLJ(I)
WRITE(6,831)N5J(I),N5K(I),ALJ(I),BLJ(I),CLJ(I),
* NREP(I),MREP(I),LREP(I)
WRITE(6,815)
10 continue
C
read(5,*)(q(i),i=1,i3n)
do 30 i=1,i3n
print*,'q (',i,') = ',q(i)
30 continue
DO 40 MN=1,i3n
PDOT(MN)=0.0
40 continue
c setting zero values for pdot, which is force
IF (NLJ.NE.0) THEN
CALL LENJ(1,NLJ)
ENDIF
end
SUBROUTINE LENJ(INL,LNL)
IMPLICIT REAL (A-H,O-Z)
parameter (nda=3,nda3=nda*3,ND05=3)
C CALCULATE LENNARD-JONES POTENTIAL ENERGY DERIVATIVES
C
COMMON/QPDOT/Q(NDA3),PDOT(NDA3)
COMMON/COORS/R(NDA*(NDA+1)/2)
COMMON/LENJB/ALJ(ND05),BLJ(ND05),CLJ(ND05),N5J(ND05),N5K(ND05),
*NREP(ND05),MREP(ND05),LREP(ND05)
DIMENSION JKA(ND05),RNA(ND05),RMB(ND05),RLC(ND05)
LOGICAL FIRST
DATA FIRST/.TRUE./
save FIRST,JKA,RNA,RMB,RLC
common/ind/natoms,i3n
IF (FIRST) THEN
DO NL=INL,LNL
JKA(NL)=ISHFT((N5J(NL)-1)*(2*NATOMS-N5J(NL)),-1)+N5K(NL)
* -N5J(NL)
c to avoid recounting
RNA(NL)=-NREP(NL)*ALJ(NL)
RMB(NL)=-MREP(NL)*BLJ(NL)
RLC(NL)=-LREP(NL)*CLJ(NL)
ENDDO
C
FIRST=.FALSE.
ENDIF
C
C CODE FOR GENERAL LENNARD-JONES
C
DO NL=INL,LNL
J3=3*N5J(NL)
J2=J3-1
J1=J2-1
K3=3*N5K(NL)
K2=K3-1
K1=K2-1
c since each atom is represented by 3 coordinates in space, indices above are used to point for a step of three.
JK=JKA(NL)
T1=Q(K1)-Q(J1)
T2=Q(K2)-Q(J2)
T3=Q(K3)-Q(J3)
R(JK)=SQRT(T1*T1+T2*T2+T3*T3)
c calculating the distance
RRJK=1.0/R(JK)
DUM1=RNA(NL)*RRJK**(2+NREP(NL))
DUM1=DUM1+RMB(NL)*RRJK**(MREP(NL)+2)
DUM1=DUM1+RLC(NL)*RRJK**(LREP(NL)+2)
c adding each terms
TDUM1=DUM1*T1
TDUM2=DUM1*T2
TDUM3=DUM1*T3
PDOT(K1)=PDOT(K1)+TDUM1
PDOT(K2)=PDOT(K2)+TDUM2
PDOT(K3)=PDOT(K3)+TDUM3
PDOT(J1)=PDOT(J1)-TDUM1
PDOT(J2)=PDOT(J2)-TDUM2
PDOT(J3)=PDOT(J3)-TDUM3
c final forces.
ENDDO
print*,'...............'
do i=1,i3n
print*,'i = ',i ,', dvdq = ',pdot(i)
enddo
C N5J(I), N5K(I), NREP(I), MREP(I), LREP(I), ALJ(I), BLJ(I) and CLJ(I) for I = 1, NLJ.
C This is information for the generalized Lennard-Jones potentials.
C N5J and N5K are the atoms with N5K greater than N5J.
C NREP, MREP, and LREP are the powers in the potential energy expression.
C If a power equals zero the appropriate term is skipped in the calculations.
return
END
C++ CODE
#include<iostream>
#include<fstream>
#include<math.h>
#include<stdio.h>
#include<stdlib.h>
using namespace std;
void lenjones(int NATOMS, int* N5J, int* N5K, int* NREP, int* MREP, int* LREP, float* ALJ, float* BLJ, float* CLJ, int NLJ,float* Q, float* PDOT){
size_t NLJF = NLJ*sizeof(float);
size_t NLJI = NLJ*sizeof(float);
float* RMB = (float*)malloc(NLJF);
float* RLC = (float*)malloc(NLJF);
float* RNA = (float*)malloc(NLJF);
int *JKA=(int*)malloc(NLJI);
for (int NL=0; NL < NLJ; NL++){
JKA[NL]= (((N5J[NL]-1)*((2*NATOMS)-N5J[NL]))>> 1) +N5K[NL]-N5J[NL];
RNA[NL]=-NREP[NL]*ALJ[NL];
RMB[NL]=-MREP[NL]*BLJ[NL];
RLC[NL]=-LREP[NL]*CLJ[NL];
}
int J3,K3;
float T1,T2,T3;
float TDUM1,TDUM2,TDUM3,DUM;
size_t RRS = (NATOMS*(NATOMS+1)/2)*sizeof(float);
float* RR = (float*)malloc(RRS);
int JK;
for (int NL=0; NL < NLJ; NL++){
J3=(3*N5J[NL])-1;
K3=(3*N5K[NL])-1;
T1=Q[K3-2]-Q[J3-2];
T2=Q[K3-1]-Q[J3-1];
T3=Q[K3]-Q[J3];
JK=JKA[NL]-1;
RR[JK]=sqrtf((T1*T1)+(T2*T2)+(T3*T3));
RR[JK]=1/RR[JK];
DUM=(RNA[NL]*powf(RR[JK],2+NREP[NL]));
DUM+=(RMB[NL]*powf(RR[JK],MREP[NL]+2));
DUM+=(RLC[NL]*powf(RR[JK],LREP[NL]+2));
TDUM1=T1*DUM;
TDUM2=T2*DUM;
TDUM3=T3*DUM;
PDOT[K3-2]=PDOT[K3-2]+TDUM1;
PDOT[K3-1]=PDOT[K3-1]+TDUM2;
PDOT[K3]=PDOT[K3]+TDUM3;
PDOT[J3-2]=PDOT[J3-2]-TDUM1;
PDOT[J3-1]=PDOT[J3-1]-TDUM2;
PDOT[J3]=PDOT[J3]-TDUM3;
}
}
//=========================================
int main(){
int NATOMS,NDA3,ND05;
scanf("%d %d", &NATOMS, &ND05);
printf("\n");
NDA3=3*NATOMS;
size_t QPDOT = NDA3*sizeof(float);
float* h_Q = (float*)malloc(QPDOT);
float* h_PDOT = (float*)malloc(QPDOT);
size_t NLJ = ND05*sizeof(float);
float* h_ALJ = (float*)malloc(NLJ);
float* h_BLJ = (float*)malloc(NLJ);
float* h_CLJ = (float*)malloc(NLJ);
size_t NLJ_i = ND05*sizeof(int);
int* h_LREP = (int*)malloc(NLJ_i);
int* h_MREP = (int*)malloc(NLJ_i);
int* h_NREP = (int*)malloc(NLJ_i);
int* h_N5J = (int*)malloc(NLJ_i);
int* h_N5K = (int*)malloc(NLJ_i);
int* h_JKA = (int*)malloc(NLJ_i);
for (int i=0; i< ND05; i++){
cin >> h_N5J[i] >> h_N5K[i] >> h_NREP[i] >> h_MREP[i] >> h_LREP[i] >> h_ALJ[i] >> h_BLJ[i] >> h_CLJ[i];
}
for (int i=0; i<NDA3; i++){
scanf("%f", &h_Q[i]);
}
for (int i=0; i<NDA3; i++){
h_PDOT[i]=0;
}
lenjones(NATOMS, &h_N5J[0], &h_N5K[0], &h_NREP[0], &h_MREP[0], &h_LREP[0], &h_ALJ[0], &h_BLJ[0], &h_CLJ[0], ND05, &h_Q[0], &h_PDOT[0]);
cout << "i " << "Q[i] " << "PDOT[i]" << endl;
for (int i=0; i<NDA3; i++){
printf("%d %e %le \n" , i, h_Q[i], h_PDOT[i]);
}
}
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
如果您想要更好的数学精度,您应该在 C++ 中使用
double
而不是float
。不知道 Fortran 给你的精度是多少(很好,我猜是因为它广泛用于计算),但是float
对于 C++ 数学来说是不精确的。检查您的 C++/CUDA 编译器选项以获得最佳数学精度,例如。 适用于 Visual C++
If you want better math precision you should be using
double
notfloat
in C++. Don't know what precision Fortran gives you (good, I am guessing since it's widely-used for calculation afaik), butfloat
is imprecise for C++ math.Check your C++/CUDA compiler options for best math precision also, eg. for Visual C++
对于相同的输入,输出中间结果并追踪它们从何时开始出现分歧。
For the same inputs, output intermediate results and track down at which point do they start diverging.
我注意到 FORTRAN 和 C++ 代码之间很可能会引入数值差异:
**
) 与 C++sqrt< 中的
powf
/code> 与sqrt
在您的 C++Some things I noticed between your FORTRAN and C++ code that are very likely to introduce numerical differences:
**
) versuspowf
in your C++sqrt
versussqrt
in your C++