我想使用 python、gdal 和 numpy 创建一些高程/高度场栅格。我被困在 numpy (可能还有 python 和 gdal)上。
在 numpy 中,我一直在尝试以下操作:
>>> a= numpy.linspace(4,1,4, endpoint=True)
>>> b= numpy.vstack(a)
>>> c=numpy.repeat(b,4,axis=1)
>>> c
array([[ 4., 4., 4., 4.],
[ 3., 3., 3., 3.],
[ 2., 2., 2., 2.],
[ 1., 1., 1., 1.]]) #This is the elevation data I want
from osgeo import gdal
from gdalconst import *
>>> format = "Terragen"
>>> driver = gdal.GetDriverByName(format)
>>> dst_ds = driver.Create('test.ter', 4,4,1,gdal.GDT_Float32, ['MINUSERPIXELVALUE = 1', 'MAXUSERPIXELVALUE= 4'])
>>> raster = numpy.zeros((4,4), dtype=numpy.float32) #this is where I'm messing up
>>> dst_ds.GetRasterBand(1).WriteArray(raster) # gives the null elevation data I asked for in (raster)
0
>>> dst_ds = None
我想我错过了一些简单的东西,期待你的建议。
谢谢,
克里斯
(稍后继续)
- terragendataset.cpp,v 1.2
*
- 项目:Terragen(tm) TER 驱动程序
- 用途:Terragen TER 文档的阅读器
- 作者:Ray Gardener,Daylon Graphics Ltd.
*
- 此模块的部分内容源自 GDAL 驱动程序
- Frank Warmerdam,请参阅 http://www.gdal.org
我的歉意提前给雷·加德纳和弗兰克·沃默丹。
Terragen 格式注释:
用于写作:
SCAL = 网格柱距离(米)
hv_px = hv_m / SCAL
span_px = span_m / SCAL
偏移量 = 参见 TerragenDataset::write_header()
比例 = 参见 TerragenDataset::write_header()
物理高压=
(hv_px - offset) * 65536.0/scale
我们告诉调用者:
Elevations are Int16 when reading,
and Float32 when writing. We need logical
elevations when writing so that we can
encode them with as much precision as possible
when going down to physical 16-bit ints.
Implementing band::SetScale/SetOffset won't work because
it requires callers to know format write details.
So we've added two Create() options that let the
caller tell us the span's logical extent, and with
those two values we can convert to physical pixels.
ds::SetGeoTransform() lets us establish the
size of ground pixels.
ds::SetProjection() lets us establish what
units ground measures are in (also needed
to calc the size of ground pixels).
band::SetUnitType() tells us what units
the given Float32 elevations are in.
这告诉我,在上面的 WriteArray(somearray) 之前,我必须设置 GeoTransform
以及 SetProjection 和 SetUnitType 以便工作(可能)
来自 GDAL API 教程:
Python
导入OSR
import numpy
dst_ds.SetGeoTransform( [ 444720, 30, 0, 3751320, 0, -30 ] )
srs = osr.SpatialReference()
srs.SetUTM( 11, 1 )
srs.SetWellKnownGeogCS( 'NAD27' )
dst_ds.SetProjection( srs.ExportToWkt() )
raster = numpy.zeros( (512, 512), dtype=numpy.uint8 ) #we've seen this before
dst_ds.GetRasterBand(1).WriteArray( raster )
# Once we're done, close properly the dataset
dst_ds = None
我为创建一个过长的帖子和忏悔而道歉。如果我做对了,那么将所有笔记放在一个地方(长帖子)就好了。
坦白:
我之前拍摄了一张照片 (jpeg),将其转换为 geotiff,并将其作为图块导入到 PostGIS 数据库中。我现在正在尝试创建高程栅格来覆盖图片。这可能看起来很愚蠢,但我想向一位艺术家致敬,而在
同时不要冒犯那些辛勤工作以创建和改进这些伟大工具的人。
这位艺术家是比利时人,所以米是有序的。她在纽约曼哈顿下城工作,UTM 18。现在有一些合理的 SetGeoTransform。上面提到的图片是w=3649/h=2736,我得考虑一下。
另一种尝试:
>>> format = "Terragen"
>>> driver = gdal.GetDriverByName(format)
>>> dst_ds = driver.Create('test_3.ter', 4,4,1, gdal.GDT_Float32, ['MINUSERPIXELVALUE=1','MAXUSERPIXELVALUE-4'])
>>> type(dst_ds)
<class 'osgeo.gdal.Dataset'>
>>> import osr
>>> dst_ds.SetGeoTransform([582495, 1, 0.5, 4512717, 0.5, -1]) #x-res 0.5, y_res 0.5 a guess
0
>>> type(dst_ds)
<class 'osgeo.gdal.Dataset'>
>>> srs = osr.SpatialReference()
>>> srs.SetUTM(18,1)
0
>>> srs.SetWellKnownGeogCS('WGS84')
0
>>> dst_ds.SetProjection(srs.ExportToWkt())
0
>>> raster = c.astype(numpy.float32)
>>> dst_ds.GetRasterBand(1).WriteArray(raster)
0
>>> dst_ds = None
>>> from osgeo import gdalinfo
>>> gdalinfo.main(['foo', 'test_3.ter'])
Driver: Terragen/Terragen heightfield
Files: test_3.ter
Size is 4, 4
Coordinate System is:
LOCAL_CS["Terragen world space",
UNIT["m",1]]
Origin = (0.000000000000000,0.000000000000000)
Pixel Size = (1.000000000000000,1.000000000000000)
Metadata:
AREA_OR_POINT=Point
Corner Coordinates:
Upper Left ( 0.0000000, 0.0000000)
Lower Left ( 0.0000000, 4.0000000)
Upper Right ( 4.0000000, 0.0000000)
Lower Right ( 4.0000000, 4.0000000)
Center ( 2.0000000, 2.0000000)
Band 1 Block=4x1 Type=Int16, ColorInterp=Undefined
Unit Type: m
Offset: 2, Scale:7.62939453125e-05
0
显然越来越接近,但不清楚 SetUTM(18,1) 是否被拾取。这是 4x4 吗?
哈德逊河还是 Local_CS(坐标系)?什么是无声的失败?
更多阅读
// Terragen files aren't really georeferenced, but
// we should get the projection's linear units so
// that we can scale elevations correctly.
// Increase the heightscale until the physical span
// fits within a 16-bit range. The smaller the logical span,
// the more necessary this becomes.
4x4 米是一个相当小的逻辑跨度。
所以,也许这已经是最好的了。 SetGeoTransform 获取正确的单位,设置比例,然后您就拥有了 Terragen 世界空间。
最后的想法:我不编程,但在某种程度上我可以遵循。也就是说,我首先有点想知道我的小 Terragen 世界空间中的数据是否以及然后是什么样子
(以下感谢http://www.gis.usu.edu/~chrisg /python/2009/ 周 4):
>>> fn = 'test_3.ter'
>>> ds = gdal.Open(fn, GA_ReadOnly)
>>> band = ds.GetRasterBand(1)
>>> data = band.ReadAsArray(0,0,1,1)
>>> data
array([[26214]], dtype=int16)
>>> data = band.ReadAsArray(0,0,4,4)
>>> data
array([[ 26214, 26214, 26214, 26214],
[ 13107, 13107, 13107, 13107],
[ 0, 0, 0, 0],
[-13107, -13107, -13107, -13107]], dtype=int16)
>>>
所以这是令人欣慰的。我想象上面使用的 numpy c 之间的区别
这个结果适用于在这个非常小的区域应用 Float16 的操作
逻辑跨度。
关于“hf2”:
>>> src_ds = gdal.Open('test_3.ter')
>>> dst_ds = driver.CreateCopy('test_6.hf2', src_ds, 0)
>>> dst_ds.SetGeoTransform([582495,1,0.5,4512717,0.5,-1])
0
>>> srs = osr.SpatialReference()
>>> srs.SetUTM(18,1)
0
>>> srs.SetWellKnownGeogCS('WGS84')
0
>>> dst_ds.SetProjection( srs.ExportToWkt())
0
>>> dst_ds = None
>>> src_ds = None
>>> gdalinfo.main(['foo','test_6.hf2'])
Driver: HF2/HF2/HFZ heightfield raster
Files: test_6.hf2
test_6.hf2.aux.xml
Size is 4, 4
Coordinate System is:
PROJCS["UTM Zone 18, Northern Hemisphere",
GEOGCS["WGS 84",
DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY["EPSG","7030"]],
TOWGS84[0,0,0,0,0,0,0],
AUTHORITY["EPSG","6326"]],
PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],
UNIT["degree",0.0174532925199433,
AUTHORITY["EPSG","9108"]],
AUTHORITY["EPSG","4326"]],
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",-75],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",500000],
PARAMETER["false_northing",0],
UNIT["Meter",1]]
Origin = (0.000000000000000,0.000000000000000)
Pixel Size = (1.000000000000000,1.000000000000000)
Metadata:
VERTICAL_PRECISION=1.000000
Corner Coordinates:
Upper Left ( 0.0000000, 0.0000000) ( 79d29'19.48"W, 0d 0' 0.01"N)
Lower Left ( 0.0000000, 4.0000000) ( 79d29'19.48"W, 0d 0' 0.13"N)
Upper Right ( 4.0000000, 0.0000000) ( 79d29'19.35"W, 0d 0' 0.01"N)
Lower Right ( 4.0000000, 4.0000000) ( 79d29'19.35"W, 0d 0' 0.13"N)
Center ( 2.0000000, 2.0000000) ( 79d29'19.41"W, 0d 0' 0.06"N)
Band 1 Block=256x1 Type=Float32, ColorInterp=Undefined
Unit Type: m
0
>>>
几乎完全令人满意,尽管看起来我在秘鲁的 La Concordia。所以我有
弄清楚怎么说——像更北的地方,比如纽约北。 SetUTM 是否采用第三个元素来表明向北或向南“多远”。昨天我好像看到了一张 UTM 图表,上面有字母标签区域,比如赤道上的 C,纽约地区可能是 T 或 S。
我实际上认为 SetGeoTransform 本质上是建立左上角的北向和东向,这影响了 SetUTM 的“北/南多远”部分。转到 gdal-dev。
再后来:
帕丁顿熊去了秘鲁,因为他有票。我到达那里是因为我说那就是我想去的地方。 Terragen 的工作方式为我提供了像素空间。随后对 srs 的调用作用于 hf2 (SetUTM),但东向和北向是在 Terragen 下建立的,因此 UTM 18 已设置,但位于赤道的边界框中。足够好了。
gdal_translate 带我去了纽约。我在 Windows 中,所以是命令行。和结果;
C:\Program Files\GDAL>gdalinfo c:/python27/test_9.hf2
Driver: HF2/HF2/HFZ heightfield raster
Files: c:/python27/test_9.hf2
Size is 4, 4
Coordinate System is:
PROJCS["UTM Zone 18, Northern Hemisphere",
GEOGCS["NAD83",
DATUM["North_American_Datum_1983",
SPHEROID["GRS 1980",6378137,298.257222101,
AUTHORITY["EPSG","7019"]],
TOWGS84[0,0,0,0,0,0,0],
AUTHORITY["EPSG","6269"]],
PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],
UNIT["degree",0.0174532925199433,
AUTHORITY["EPSG","9122"]],
AUTHORITY["EPSG","4269"]],
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",-75],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",500000],
PARAMETER["false_northing",0],
UNIT["Meter",1]]
Origin = (583862.000000000000000,4510893.000000000000000)
Pixel Size = (-1.000000000000000,-1.000000000000000)
Metadata:
VERTICAL_PRECISION=0.010000
Corner Coordinates:
Upper Left ( 583862.000, 4510893.000) ( 74d 0'24.04"W, 40d44'40.97"N)
Lower Left ( 583862.000, 4510889.000) ( 74d 0'24.04"W, 40d44'40.84"N)
Upper Right ( 583858.000, 4510893.000) ( 74d 0'24.21"W, 40d44'40.97"N)
Lower Right ( 583858.000, 4510889.000) ( 74d 0'24.21"W, 40d44'40.84"N)
Center ( 583860.000, 4510891.000) ( 74d 0'24.13"W, 40d44'40.91"N)
Band 1 Block=256x1 Type=Float32, ColorInterp=Undefined
Unit Type: m
C:\Program Files\GDAL>
所以,我们回到了纽约。可能有更好的方法来解决这一切。我
必须有一个接受 Create 的目标,因为我也从 numpy 假设/临时创建了一个数据集。我需要看看其他允许创建的格式。 GeoTiff 中的提升是可能的(我认为)。
我感谢所有评论、建议以及对适当阅读的温和推动。用 python 制作地图很有趣!
克里斯
I would like to create some elevation/heightfield rasters using python, gdal and numpy. I'm stuck on numpy (and probably python and gdal.)
In numpy, I've been attempting the following:
>>> a= numpy.linspace(4,1,4, endpoint=True)
>>> b= numpy.vstack(a)
>>> c=numpy.repeat(b,4,axis=1)
>>> c
array([[ 4., 4., 4., 4.],
[ 3., 3., 3., 3.],
[ 2., 2., 2., 2.],
[ 1., 1., 1., 1.]]) #This is the elevation data I want
from osgeo import gdal
from gdalconst import *
>>> format = "Terragen"
>>> driver = gdal.GetDriverByName(format)
>>> dst_ds = driver.Create('test.ter', 4,4,1,gdal.GDT_Float32, ['MINUSERPIXELVALUE = 1', 'MAXUSERPIXELVALUE= 4'])
>>> raster = numpy.zeros((4,4), dtype=numpy.float32) #this is where I'm messing up
>>> dst_ds.GetRasterBand(1).WriteArray(raster) # gives the null elevation data I asked for in (raster)
0
>>> dst_ds = None
I figure I'm missing something simple and look forward to your advice.
Thanks,
Chris
(continued later)
- terragendataset.cpp,v 1.2
*
- Project: Terragen(tm) TER Driver
- Purpose: Reader for Terragen TER documents
- Author: Ray Gardener, Daylon Graphics Ltd.
*
- Portions of this module derived from GDAL drivers by
- Frank Warmerdam, see http://www.gdal.org
My apologies in advance to Ray Gardener and Frank Warmerdam.
Terragen format notes:
For writing:
SCAL = gridpost distance in meters
hv_px = hv_m / SCAL
span_px = span_m / SCAL
offset = see TerragenDataset::write_header()
scale = see TerragenDataset::write_header()
physical hv =
(hv_px - offset) * 65536.0/scale
We tell callers that:
Elevations are Int16 when reading,
and Float32 when writing. We need logical
elevations when writing so that we can
encode them with as much precision as possible
when going down to physical 16-bit ints.
Implementing band::SetScale/SetOffset won't work because
it requires callers to know format write details.
So we've added two Create() options that let the
caller tell us the span's logical extent, and with
those two values we can convert to physical pixels.
ds::SetGeoTransform() lets us establish the
size of ground pixels.
ds::SetProjection() lets us establish what
units ground measures are in (also needed
to calc the size of ground pixels).
band::SetUnitType() tells us what units
the given Float32 elevations are in.
This tells me that prior to my above WriteArray(somearray) I have to set both the GeoTransform
and SetProjection and SetUnitType for things to work (potentially)
From the GDAL API Tutorial:
Python
import osr
import numpy
dst_ds.SetGeoTransform( [ 444720, 30, 0, 3751320, 0, -30 ] )
srs = osr.SpatialReference()
srs.SetUTM( 11, 1 )
srs.SetWellKnownGeogCS( 'NAD27' )
dst_ds.SetProjection( srs.ExportToWkt() )
raster = numpy.zeros( (512, 512), dtype=numpy.uint8 ) #we've seen this before
dst_ds.GetRasterBand(1).WriteArray( raster )
# Once we're done, close properly the dataset
dst_ds = None
My apologies for creating an overly long post and a confession. If and when I get this right, it would be nice to have all the notes in one place (the long post).
The Confession:
I have previously taken a picture (jpeg), converted it to a geotiff, and imported it as tiles into a PostGIS database. I am now attempting to create elevation raster over which to drape the picture. This probably seems silly, but there is an artist whom I wish to honor, while at the
same time not offending those who have worked assiduously to create and improve these great tools.
The artist is Belgian so meters would be in order. She works in lower Manhattan, NY so, UTM 18. Now some reasonable SetGeoTransform. The above mentioned picture is w=3649/h=2736, I'll have to give some thought to this.
Another try:
>>> format = "Terragen"
>>> driver = gdal.GetDriverByName(format)
>>> dst_ds = driver.Create('test_3.ter', 4,4,1, gdal.GDT_Float32, ['MINUSERPIXELVALUE=1','MAXUSERPIXELVALUE-4'])
>>> type(dst_ds)
<class 'osgeo.gdal.Dataset'>
>>> import osr
>>> dst_ds.SetGeoTransform([582495, 1, 0.5, 4512717, 0.5, -1]) #x-res 0.5, y_res 0.5 a guess
0
>>> type(dst_ds)
<class 'osgeo.gdal.Dataset'>
>>> srs = osr.SpatialReference()
>>> srs.SetUTM(18,1)
0
>>> srs.SetWellKnownGeogCS('WGS84')
0
>>> dst_ds.SetProjection(srs.ExportToWkt())
0
>>> raster = c.astype(numpy.float32)
>>> dst_ds.GetRasterBand(1).WriteArray(raster)
0
>>> dst_ds = None
>>> from osgeo import gdalinfo
>>> gdalinfo.main(['foo', 'test_3.ter'])
Driver: Terragen/Terragen heightfield
Files: test_3.ter
Size is 4, 4
Coordinate System is:
LOCAL_CS["Terragen world space",
UNIT["m",1]]
Origin = (0.000000000000000,0.000000000000000)
Pixel Size = (1.000000000000000,1.000000000000000)
Metadata:
AREA_OR_POINT=Point
Corner Coordinates:
Upper Left ( 0.0000000, 0.0000000)
Lower Left ( 0.0000000, 4.0000000)
Upper Right ( 4.0000000, 0.0000000)
Lower Right ( 4.0000000, 4.0000000)
Center ( 2.0000000, 2.0000000)
Band 1 Block=4x1 Type=Int16, ColorInterp=Undefined
Unit Type: m
Offset: 2, Scale:7.62939453125e-05
0
Clearly getting closer but unclear if the SetUTM(18,1) was picked up. Is this a 4x4 in the
Hudson River or a Local_CS(coordinate system)? What's a silent fail?
More Reading
// Terragen files aren't really georeferenced, but
// we should get the projection's linear units so
// that we can scale elevations correctly.
// Increase the heightscale until the physical span
// fits within a 16-bit range. The smaller the logical span,
// the more necessary this becomes.
4x4 meters is a pretty small logical span.
So, perhaps this is as good as it gets. The SetGeoTransform gets the units right, sets the scale and you have your Terragen World Space.
Final Thought: I don't program, but to an extent I can follow along. That said, I kinda wondered first if and then what the data looked like in my little Terragen World Space
(the following thanks to http://www.gis.usu.edu/~chrisg/python/2009/ week 4):
>>> fn = 'test_3.ter'
>>> ds = gdal.Open(fn, GA_ReadOnly)
>>> band = ds.GetRasterBand(1)
>>> data = band.ReadAsArray(0,0,1,1)
>>> data
array([[26214]], dtype=int16)
>>> data = band.ReadAsArray(0,0,4,4)
>>> data
array([[ 26214, 26214, 26214, 26214],
[ 13107, 13107, 13107, 13107],
[ 0, 0, 0, 0],
[-13107, -13107, -13107, -13107]], dtype=int16)
>>>
So this is gratifying. I imagine the difference between the above used numpy c
and this result goes to the actions of applying Float16 across this very small
logical span.
And on to 'hf2':
>>> src_ds = gdal.Open('test_3.ter')
>>> dst_ds = driver.CreateCopy('test_6.hf2', src_ds, 0)
>>> dst_ds.SetGeoTransform([582495,1,0.5,4512717,0.5,-1])
0
>>> srs = osr.SpatialReference()
>>> srs.SetUTM(18,1)
0
>>> srs.SetWellKnownGeogCS('WGS84')
0
>>> dst_ds.SetProjection( srs.ExportToWkt())
0
>>> dst_ds = None
>>> src_ds = None
>>> gdalinfo.main(['foo','test_6.hf2'])
Driver: HF2/HF2/HFZ heightfield raster
Files: test_6.hf2
test_6.hf2.aux.xml
Size is 4, 4
Coordinate System is:
PROJCS["UTM Zone 18, Northern Hemisphere",
GEOGCS["WGS 84",
DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY["EPSG","7030"]],
TOWGS84[0,0,0,0,0,0,0],
AUTHORITY["EPSG","6326"]],
PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],
UNIT["degree",0.0174532925199433,
AUTHORITY["EPSG","9108"]],
AUTHORITY["EPSG","4326"]],
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",-75],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",500000],
PARAMETER["false_northing",0],
UNIT["Meter",1]]
Origin = (0.000000000000000,0.000000000000000)
Pixel Size = (1.000000000000000,1.000000000000000)
Metadata:
VERTICAL_PRECISION=1.000000
Corner Coordinates:
Upper Left ( 0.0000000, 0.0000000) ( 79d29'19.48"W, 0d 0' 0.01"N)
Lower Left ( 0.0000000, 4.0000000) ( 79d29'19.48"W, 0d 0' 0.13"N)
Upper Right ( 4.0000000, 0.0000000) ( 79d29'19.35"W, 0d 0' 0.01"N)
Lower Right ( 4.0000000, 4.0000000) ( 79d29'19.35"W, 0d 0' 0.13"N)
Center ( 2.0000000, 2.0000000) ( 79d29'19.41"W, 0d 0' 0.06"N)
Band 1 Block=256x1 Type=Float32, ColorInterp=Undefined
Unit Type: m
0
>>>
Nearly completely gratifying, though it looks like I'm in La Concordia Peru. So I have
to figure out how to say- like more north, like New York North. Does SetUTM take a third element suggesting 'how far' north or south. Seems I ran across a UTM chart yesterday that had letter label zones, something like C at the equator and maybe T or S for New York area.
I actually thought the SetGeoTransform was essentially establishing the top left northing and easting and this was influencing the that 'how far north/south' part of SetUTM. Off to gdal-dev.
And later still:
Paddington Bear went to Peru because he had a ticket. I got there because I said that's where I wanted to be. Terragen, working as it does, gave me my pixel space. The subsequent calls to srs acted upon the hf2 (SetUTM), but the easting and northing were established under Terragen so the UTM 18 got set, but in a bounding box at the equator. Good enough.
gdal_translate got me to New York. I'm in windows so a command line. and the result;
C:\Program Files\GDAL>gdalinfo c:/python27/test_9.hf2
Driver: HF2/HF2/HFZ heightfield raster
Files: c:/python27/test_9.hf2
Size is 4, 4
Coordinate System is:
PROJCS["UTM Zone 18, Northern Hemisphere",
GEOGCS["NAD83",
DATUM["North_American_Datum_1983",
SPHEROID["GRS 1980",6378137,298.257222101,
AUTHORITY["EPSG","7019"]],
TOWGS84[0,0,0,0,0,0,0],
AUTHORITY["EPSG","6269"]],
PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],
UNIT["degree",0.0174532925199433,
AUTHORITY["EPSG","9122"]],
AUTHORITY["EPSG","4269"]],
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",-75],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",500000],
PARAMETER["false_northing",0],
UNIT["Meter",1]]
Origin = (583862.000000000000000,4510893.000000000000000)
Pixel Size = (-1.000000000000000,-1.000000000000000)
Metadata:
VERTICAL_PRECISION=0.010000
Corner Coordinates:
Upper Left ( 583862.000, 4510893.000) ( 74d 0'24.04"W, 40d44'40.97"N)
Lower Left ( 583862.000, 4510889.000) ( 74d 0'24.04"W, 40d44'40.84"N)
Upper Right ( 583858.000, 4510893.000) ( 74d 0'24.21"W, 40d44'40.97"N)
Lower Right ( 583858.000, 4510889.000) ( 74d 0'24.21"W, 40d44'40.84"N)
Center ( 583860.000, 4510891.000) ( 74d 0'24.13"W, 40d44'40.91"N)
Band 1 Block=256x1 Type=Float32, ColorInterp=Undefined
Unit Type: m
C:\Program Files\GDAL>
So, we're back in NY. There are probably better ways to approach all this. I
had to have a target that accepted Create as I was postulating/improvising a dataset from numpy as well. I need to look at other formats that allow create. Elevation in GeoTiff is a possibility (I think.)
My thanks to all Comments, suggestions, and gentle nudges toward appropriate reading. Making maps in python is fun!
Chris
发布评论
评论(1)
你离这个还不算太远。您唯一的问题是 GDAL 创建选项的语法问题。替换:
在键/值对之前或之后无空格:
检查
type(dst_ds)
,它应该是
而不是
来实现静默失败,如上述情况。更新默认情况下,不显示警告或异常 。您可以通过 gdal.UseExceptions() 启用它们以查看下面的内容,例如:
You aren't too far off. Your only problem is the syntax issues with the GDAL creation options. Replace:
with no spaces before or after the key/value pairs:
Check
type(dst_ds)
and it should be<class 'osgeo.gdal.Dataset'>
rather than<type 'NoneType'>
for a silent fail as was the case for the above.Update By default, warnings or exceptions are not shown. You can enable them via
gdal.UseExceptions()
to see what's ticking underneath, e.g.: