gprof 与 cachegrind 配置文件
在尝试优化代码时,我对 kcachegrdind 和 gprof 生成的配置文件的差异感到有点困惑。具体来说,如果我使用 gprof (使用 -pg
开关等进行编译),我会得到以下结果:
Flat profile:
Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls ms/call ms/call name
89.62 3.71 3.71 204626 0.02 0.02 objR<true>::R_impl(std::vector<coords_t, std::allocator<coords_t> > const&, std::vector<unsigned long, std::allocator<unsigned long> > const&) const
5.56 3.94 0.23 18018180 0.00 0.00 W2(coords_t const&, coords_t const&)
3.87 4.10 0.16 200202 0.00 0.00 build_matrix(std::vector<coords_t, std::allocator<coords_t> > const&)
0.24 4.11 0.01 400406 0.00 0.00 std::vector<double, std::allocator<double> >::vector(std::vector<double, std::allocator<double> > const&)
0.24 4.12 0.01 100000 0.00 0.00 Wrat(std::vector<coords_t, std::allocator<coords_t> > const&, std::vector<coords_t, std::allocator<coords_t> > const&)
0.24 4.13 0.01 9 1.11 1.11 std::vector<short, std::allocator<short> >* std::__uninitialized_copy_a<__gnu_cxx::__normal_iterator<std::vector<short, std::alloca
这似乎表明我不需要费心寻找除了 ::R_impl(... )
同时,如果我在没有 -pg
开关的情况下进行编译并运行 valgrind --tool=callgrind ./a.out
,我会得到一些东西相当不同:这是一个屏幕截图kcachegrind
输出
如果我正确解释这一点,似乎表明 ::R_impl(...)
只花费大约 50% 的时间,而另一半则花在线性代数上(Wrat(...)
、特征值< /code> 和底层 lapack 调用),它位于
gprof
配置文件的下方。
我知道 gprof
和 cachegrind
使用不同的技术,如果它们的结果有所不同,我也不会担心。但在这里,它看起来非常不同,我不知道如何解释它们。有什么想法或建议吗?
While trying to optimize a code, I'm a bit puzzled by differences in profiles produced by kcachegrdind
and gprof
. Specifically, if I use gprof (compiling with the -pg
switch, etc), I have this:
Flat profile:
Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls ms/call ms/call name
89.62 3.71 3.71 204626 0.02 0.02 objR<true>::R_impl(std::vector<coords_t, std::allocator<coords_t> > const&, std::vector<unsigned long, std::allocator<unsigned long> > const&) const
5.56 3.94 0.23 18018180 0.00 0.00 W2(coords_t const&, coords_t const&)
3.87 4.10 0.16 200202 0.00 0.00 build_matrix(std::vector<coords_t, std::allocator<coords_t> > const&)
0.24 4.11 0.01 400406 0.00 0.00 std::vector<double, std::allocator<double> >::vector(std::vector<double, std::allocator<double> > const&)
0.24 4.12 0.01 100000 0.00 0.00 Wrat(std::vector<coords_t, std::allocator<coords_t> > const&, std::vector<coords_t, std::allocator<coords_t> > const&)
0.24 4.13 0.01 9 1.11 1.11 std::vector<short, std::allocator<short> >* std::__uninitialized_copy_a<__gnu_cxx::__normal_iterator<std::vector<short, std::alloca
Which seems to suggest that I need not bother looking anywhere but ::R_impl(...)
At the same time, if I compile without the -pg
switch and run valgrind --tool=callgrind ./a.out
instead, I have something rather different: here's a screenshot of the kcachegrind
output
If I interpret this correctly, it seems to suggest that ::R_impl(...)
only takes about 50% of time, while the other half is spent in linear algebra (Wrat(...)
, eigenvalues
and the underlying lapack calls ) which was way down below in the gprof
profile.
I understand that gprof
and cachegrind
use different techniques, and I'd not bother if their results were somewhat different. But here, it looks very different, and I'm at loss as to how to interpret those. Any ideas or suggestions?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
您正在查看错误的列。您必须查看 kcachegrind 输出中的第二列,即名为“self”的列。这是特定子例程仅在不考虑其子例程的情况下花费的时间。第一列包含累积时间(它等于主机器时间的 100%),但它的信息量并不大(在我看来)。
请注意,从 kcachegrind 的输出中,您可以看到该过程的总时间为 53.64 秒,而子例程“R_impl”所花费的时间为 46.72 秒,占总时间的 87%。所以 gprof 和 kcachegrind 几乎完全一致。
You are looking at the wrong column. You have to look at the second column in kcachegrind output, the one named "self". This is the time spent by the particular subroutine only without considering its children. The first column has the cumulative time (it is equal to 100% of machine time for the main) and it is not that informative (in my opinion).
Note that from the output of kcachegrind you can see that the total time of the process is 53.64 second while the time spent in the subroutine "R_impl" is 46.72 second which is 87% of the total time. So gprof and kcachegrind agree almost perfectly.
gprof
是一个仪表化分析器,callgrind
是一个采样分析器。使用仪表分析器,每个函数进入和退出都会产生开销,这可能会导致分析结果出现偏差,特别是如果您的函数相对较小且被调用多次的话。采样分析器往往更准确 - 它们会稍微减慢整个程序的执行速度,但这往往会对所有函数产生相同的相对影响。尝试 Zoom from RotateRight 的 30 天免费评估 - 我怀疑它会给你一个更符合
callgrind 的个人资料
比使用gprof
更好。gprof
is an instrumented profiler,callgrind
is a sampling profiler. With an instrumented profiler you get overhead for every function entry and exit, which can skew the profile, particularly if you have relatively small functions which are called many times. Sampling profilers tend to be more accurate - they slow the overall program execution slightly, but this tends to have the same relative effect on all functions.Try the free 30 day evaluation of Zoom from RotateRight - I suspect it will give you a profile which agrees more with
callgrind
than withgprof
.