C++用于扩展任意标准符合分配器的设计模式

发布于 2024-11-15 00:16:50 字数 3839 浏览 3 评论 0原文

我目前正在寻找扩展任意标准符合分配器类型的最佳方法。需要明确的是:我不想编写自定义分配器。我只想向已有的扩展或行为“添加”特定的扩展或行为。我创建了一个示例,展示了它的样子。请注意,以下代码仅用于说明目的。

#ifndef HPP_SMART_ALLOCATOR_INCLUDED
#define HPP_SMART_ALLOCATOR_INCLUDED


#include <memory>
#include <map>


template<typename T>
struct allocator_traits;

template<typename T, class allocator_type = std::allocator<T>>
class smart_allocator;


template<>
struct allocator_traits<void>
{
    typedef std::allocator<void>::const_pointer const_pointer;
    typedef std::allocator<void>::pointer       pointer;
    typedef std::allocator<void>::value_type    value_type;
};

template<typename T>
struct allocator_traits
{
    typedef typename std::allocator<T>::const_pointer   const_pointer;
    typedef typename std::allocator<T>::const_reference const_reference;
    typedef typename std::allocator<T>::difference_type difference_type;
    typedef typename std::allocator<T>::pointer         pointer;
    typedef typename std::allocator<T>::reference       reference;
    typedef typename std::allocator<T>::size_type       size_type;
    typedef typename std::allocator<T>::value_type      value_type;
};


template<class allocator_type>
class smart_allocator<void, allocator_type>
    : public allocator_traits<void>
{
public:
    template<typename U> struct rebind { typedef smart_allocator<U, typename allocator_type::rebind<U>::other> other; };
};

template<typename T, class allocator_type>
class smart_allocator
    : public  allocator_traits<T>,
      private allocator_type
{
public:
    using typename allocator_traits<T>::const_pointer;
    using typename allocator_traits<T>::const_reference;
    using typename allocator_traits<T>::difference_type;
    using typename allocator_traits<T>::pointer;
    using typename allocator_traits<T>::reference;
    using typename allocator_traits<T>::size_type;
    using typename allocator_traits<T>::value_type;
    template<typename U> struct rebind { typedef smart_allocator<U, typename allocator_type::rebind<U>::other> other; };

    smart_allocator() throw() /*noexcept*/;
    smart_allocator(allocator_type const&) throw() /*noexcept*/;
    virtual ~smart_allocator() throw();

    virtual ~smart_allocator()
    {
        std::map<pointer, size_type>::iterator i = this->m_map.begin();
        while (i != this->m_map.end())
        {
            this->allocator_type::deallocate(i->first, i->second);
            ++i;
        }
    }

    pointer allocate(size_type n, allocator_traits<void>::const_pointer hint = 0)
    {
        pointer p = this->allocator_type::allocate(n, hint);
        this->m_map.insert(std::pair<pointer, size_type>(p, n));
        return p;
    }

    void deallocate(pointer p, size_type n) /*noexcept*/
    {
        std::map<pointer, size_type>::iterator iter = this->m_map.find(p);
        if (iter != this->m_map.end())
            this->allocator_type::deallocate(iter->first, iter->second);
    }

    using allocator_type::address;
    using allocator_type::construct;
    using allocator_type::destroy;
    using allocator_type::max_size;

private:
    smart_allocator(smart_allocator const&) throw();
    smart_allocator& operator=(smart_allocator const&);

    std::map<pointer, size_type> m_map;
};


#endif /* HPP_SMART_ALLOCATOR_INCLUDED */

请考虑以下注意事项:

  • 模板参数 allocator_type 可以是任何标准符合类型。它不限于 std::allocator。所有 STL 实现都使用相同的技术。
  • 从 allocator_type 派生时,我们需要使用私有继承,因为 std::allocator 成员函数都不是虚拟的。然而, std::allocator& alloc = smart_allocator() 不会执行您可能期望的操作。

您认为这适用吗?

I'm currently searching for the best way to extend an arbitrary standard conform allocator type. To be clear: I don't want to write a custom allocator. I just want to "add" a specific extension or behavior to an already existing one. I've created a sample how this could look like. Please note, that the following code is just for illustration purpose.

#ifndef HPP_SMART_ALLOCATOR_INCLUDED
#define HPP_SMART_ALLOCATOR_INCLUDED


#include <memory>
#include <map>


template<typename T>
struct allocator_traits;

template<typename T, class allocator_type = std::allocator<T>>
class smart_allocator;


template<>
struct allocator_traits<void>
{
    typedef std::allocator<void>::const_pointer const_pointer;
    typedef std::allocator<void>::pointer       pointer;
    typedef std::allocator<void>::value_type    value_type;
};

template<typename T>
struct allocator_traits
{
    typedef typename std::allocator<T>::const_pointer   const_pointer;
    typedef typename std::allocator<T>::const_reference const_reference;
    typedef typename std::allocator<T>::difference_type difference_type;
    typedef typename std::allocator<T>::pointer         pointer;
    typedef typename std::allocator<T>::reference       reference;
    typedef typename std::allocator<T>::size_type       size_type;
    typedef typename std::allocator<T>::value_type      value_type;
};


template<class allocator_type>
class smart_allocator<void, allocator_type>
    : public allocator_traits<void>
{
public:
    template<typename U> struct rebind { typedef smart_allocator<U, typename allocator_type::rebind<U>::other> other; };
};

template<typename T, class allocator_type>
class smart_allocator
    : public  allocator_traits<T>,
      private allocator_type
{
public:
    using typename allocator_traits<T>::const_pointer;
    using typename allocator_traits<T>::const_reference;
    using typename allocator_traits<T>::difference_type;
    using typename allocator_traits<T>::pointer;
    using typename allocator_traits<T>::reference;
    using typename allocator_traits<T>::size_type;
    using typename allocator_traits<T>::value_type;
    template<typename U> struct rebind { typedef smart_allocator<U, typename allocator_type::rebind<U>::other> other; };

    smart_allocator() throw() /*noexcept*/;
    smart_allocator(allocator_type const&) throw() /*noexcept*/;
    virtual ~smart_allocator() throw();

    virtual ~smart_allocator()
    {
        std::map<pointer, size_type>::iterator i = this->m_map.begin();
        while (i != this->m_map.end())
        {
            this->allocator_type::deallocate(i->first, i->second);
            ++i;
        }
    }

    pointer allocate(size_type n, allocator_traits<void>::const_pointer hint = 0)
    {
        pointer p = this->allocator_type::allocate(n, hint);
        this->m_map.insert(std::pair<pointer, size_type>(p, n));
        return p;
    }

    void deallocate(pointer p, size_type n) /*noexcept*/
    {
        std::map<pointer, size_type>::iterator iter = this->m_map.find(p);
        if (iter != this->m_map.end())
            this->allocator_type::deallocate(iter->first, iter->second);
    }

    using allocator_type::address;
    using allocator_type::construct;
    using allocator_type::destroy;
    using allocator_type::max_size;

private:
    smart_allocator(smart_allocator const&) throw();
    smart_allocator& operator=(smart_allocator const&);

    std::map<pointer, size_type> m_map;
};


#endif /* HPP_SMART_ALLOCATOR_INCLUDED */

Please consider the following notes:

  • The template argument allocator_type could be any standard conform type. It is not restricted to std::allocator. This is the same technique all STL implementations are using.
  • We need to use private inheritance when deriving from allocator_type, because non of the std::allocator member functions are virtual. However, std::allocator& alloc = smart_allocator() wouldn't do what you might expect.

Do you think this is applicable?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

白云不回头 2024-11-22 00:16:50

您当然需要实现复制构造函数和复制赋值运算符,否则当容器按值传递分配器时,您的映射可能会被破坏(特别是您可能会导致双重删除)。可能还有其他我没有注意到的考虑因素。

You'd certainly need to implement a copy constructor and copy assignment operator, or your map may get mangled when containers pass the allocator around by value (specifically you could wind up double-deleting). There may be other considerations I didn't notice.

薄凉少年不暖心 2024-11-22 00:16:50

我立刻想到的是装饰器;正如参考文献所述,“装饰器对于使对象适应新情况很有用,而无需重写原始对象的代码。”如果我理解你的问题,这听起来就像你所追求的。

What came to mind immediately was the Decorator; as the reference notes, "Decorators are useful for adapting objects to new situations without re-writing the original object's code." Which, if I understand your question, sounds like what you are after.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文