GPU性能要求,什么是最好的解决方案?

发布于 2024-11-14 19:26:44 字数 214 浏览 6 评论 0原文

我从事一个音频处理项目,需要进行大量基本计算(+、-、*),例如 FFT(快速傅里叶变换)计算。

我们正在考虑使用显卡来加速这些计算。但我们不知道这是否是最好的解决方案。我们想要的解决方案需要是一个成本低于 500 美元的良好计算系统。

我们使用Matlab编程,并且我们有一个声卡采集必须插入系统中。

除了显卡+主板之外,您还知道其他解决方案可以进行大量微积分吗?

I work on an audio processing project that needs to do a lot of basic computations (+, -, *) like a FFT (Fast Fourier Transform) calculation.

We're considering using a graphics card to accelerate these computations. But we don't know if this is the best solution. Our desired solution needs to be a good computation system costing less than $500.

We use Matlab programming, and we have a sound card acquisition which have to be plug in the system.

Do you know a solution other than graphics card + motherboard to do lot of calculus?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

一袭水袖舞倾城 2024-11-21 19:26:44

您可以使用免费的 Matlab CUDA 在 GPU 上执行计算的库。 500 美元就能给你一个非常不错的 NVIDIA GPU。请注意,GPU 的视频内存有限,并且在数据量较大时甚至会比 Matlab 更快地耗尽内存。

我使用 GPUMat 对 8 核英特尔 CPU 与 8800 Nvidia GPU(128 个流)进行了基准测试,对于 512Kb 数据集,GPU 以与 2Ghz 的 8 核英特尔相同的速度旋转,包括到 GPU 内存的传输时间。对于严肃的 GPU 工作,我建议使用专用卡,而不是用于驱动显示器的卡。使用廉价的英特尔视频主板来驱动显示器并将阵列计算传递给 Nvidia。

You can use the free Matlab CUDA library to perform the computations on the GPU. $500 will give you a very decent NVIDIA GPU. Beware that GPU's have limited video memory and will run out of memory with large data volumes even faster than Matlab.

I have benchmarked an 8core intel CPU against an 8800 Nvidia GPU (128streams) with GPUMat , for 512Kb datasets the GPU spun out at the same speed as the 8 core intel at 2Ghz, including transfer times to the GPU memory. For serious GPU work I recommend a dedicated card compared to the one you are using to drive the monitor. Use the motherboard cheapie intel video to drive the monitor and pass the array computes to the Nvidia.

失与倦" 2024-11-21 19:26:44

MathWorks 的并行计算工具箱现在包含 GPU 支持。特别是,支持元素运算和算术,以及一维和二维 FFT(如果有的话,还有一大堆其他支持手写 CUDA 代码的东西)。如果您有兴趣执行双精度计算,最近的 Tesla 和 Quadro 品牌卡将为您提供最佳性能。

下面是一个简单的示例,展示了如何使用并行计算工具箱在 MATLAB 中使用 GPU:

gA = gpuArray( rand(1000) );
gB = fft( 1 + gA * 3 );

Parallel Computing Toolbox from MathWorks now includes GPU support. In particular, elementwise operations and arithmetic are supported, as well as 1- and 2-dimensional FFTs (along with a whole bunch of other stuff to support hand-written CUDA code if you have that). If you're interested in performing calculations in double-precision, the recent Tesla and Quadro branded cards will give you the best performance.

Here's a trivial example showing how you might use the GPU in MATLAB using Parallel Computing Toolbox:

gA = gpuArray( rand(1000) );
gB = fft( 1 + gA * 3 );
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文