Numpy - -1 的平方根留下一个小的实部

发布于 2024-11-14 12:11:13 字数 378 浏览 6 评论 0原文

也许这是一个算法问题,但以下代码

numpy.power((-1+0j),0.5)

产生以下输出

(6.1230317691118863e-17+1j) code>

类似的表达式例如 numpy.power(complex(-1),.5) 产生相同的结果,但是 - numpy.sqrt(complex(-1)) 产生 1j 的预期结果。显然,结果应该没有真正的部分,所以我错过了一些关键的东西,或者我是否需要将此报告给 numpy 开发人员。

如果有人问,不,我不能舍入实部(我需要完全精确的计算),是的,我需要使用幂函数。

Perhaps this is an algorithmic issue, but the following piece of code

numpy.power((-1+0j),0.5)

produces the following output

(6.1230317691118863e-17+1j)

Analogous expressions e.g. numpy.power(complex(-1),.5) yield the same result, however - numpy.sqrt(complex(-1)) yields the expected result of 1j. Clearly the result should have no real part, so I am missing something crucial or do I need to report this to numpy dev's.

In case anyone asks, no I can not round away the real part (I need full precision for this calculation) and yes I need to use the power function.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

幸福还没到 2024-11-21 12:11:13

所发生的情况是,-1 的平方根计算为 exp(iphase/2),其中(-1 的)相位大约 π。事实上,

>>> import cmath, math
>>> z = -1+0j
>>> cmath.phase(z)
3.141592653589793
>>> math.cos(_/2)
6.123233995736766e-17

这说明-1的相位只有π到几个1e-17;除以 2 的相位也仅约为 π/2,其余弦仅约为 0,因此您的结果(结果的实部是这个余弦)。

问题最终源于这样一个事实:只有固定的、有限数量的浮点数。数字 π 不在浮点数列表中,因此只能近似表示。 π/2 也无法精确表示,因此 -1 的平方根的实部是 π/2 的浮点近似的余弦(因此余弦不同于 0)。

因此,Python 的 numpy.power(complex(-1), .5) 的近似值最终是由于浮点数的限制,并且可能在许多语言中找到。

通过数字幂的实现,您所观察到的结果与浮点限制有关。在您的示例中,平方根是通过评估复数的模块和参数来计算的(本质上是通过 log 函数,它返回 log(module) + i 阶段)。另一方面,cmath.sqrt(-1) 恰好给出 1j,因为它使用不同的方法,并且不会遇到 的浮点近似问题。 (-1+0j)**0.5 (根据 TonyK 的建议)。

What happens is that the square root of -1 is calculated as exp(i phase/2), where the phase (of -1) is approximately π. In fact,

>>> import cmath, math
>>> z = -1+0j
>>> cmath.phase(z)
3.141592653589793
>>> math.cos(_/2)
6.123233995736766e-17

This shows that the phase of -1 is π only up to a few 1e-17; the phase divided by 2 is also only approximately π/2, and its cosine is only approximately 0, hence your result (the real part of your result is this cosine).

The problem comes ultimately from the fact that there is only a fixed, finite number of floating point numbers. The number π is not in the list of floating point numbers, and can therefore only be represented approximately. π/2 cannot be exactly represented either, so that the real part of the square root of -1 is the cosine of the floating point approximation of π/2 (hence a cosine that differs from 0).

So, Python's approximate value for numpy.power(complex(-1), .5) is ultimately due to a limitation of floating point numbers, and is likely to be found in many languages.

What you observe is connected to this floating point limitation, through the implementation of the power of a number. In your example, the square root is calculated by evaluating the the module and the argument of your complex number (essentially via the log function, which returns log(module) + i phase). On the other hand, cmath.sqrt(-1) gives exactly 1j because it uses a different method, and does not suffer from the floating point approximation problem of (-1+0j)**0.5 (as suggested by TonyK).

萌化 2024-11-21 12:11:13

这是复数实现 numpy.power() 的副作用。 stdlib 也存在同样的问题。

>>> numpy.power(-1+0j, 0.5)
(6.123233995736766e-17+1j)
>>> cmath.exp(cmath.log(-1)/2)
(6.123233995736766e-17+1j)

It's a side effect of the implementation of numpy.power() for complex numbers. The stdlib exhibits the same issue.

>>> numpy.power(-1+0j, 0.5)
(6.123233995736766e-17+1j)
>>> cmath.exp(cmath.log(-1)/2)
(6.123233995736766e-17+1j)
晌融 2024-11-21 12:11:13

尝试 numpy.real_if_close()。

请参阅:接近时为实数

Try numpy.real_if_close().

See: Real if close

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文