NP完全背包

发布于 2024-11-14 05:54:21 字数 721 浏览 6 评论 0原文

我看到 这个 ECLiPSe 解决了 XKCD漫画。我尝试将其转换为纯 Prolog。

go:-
    Total = 1505,
    Prices = [215, 275, 335, 355, 420, 580],
    length(Prices, N),
    length(Amounts, N),
    totalCost(Prices, Amounts, 0, Total),
    writeln(Total).

totalCost([], [], TotalSoFar, TotalSoFar).
totalCost([P|Prices], [A|Amounts], TotalSoFar, EndTotal):-
    between(0, 10, A),
    Cost is P*A,
    TotalSoFar1 is TotalSoFar + Cost,
    totalCost(Prices, Amounts, TotalSoFar1, EndTotal).

我不认为这是人们能想到的最好/最具声明性的解决方案。有人有任何改进建议吗?提前致谢!

I saw this ECLiPSe solution to the problem mentioned in this XKCD comic. I tried to convert this to pure Prolog.

go:-
    Total = 1505,
    Prices = [215, 275, 335, 355, 420, 580],
    length(Prices, N),
    length(Amounts, N),
    totalCost(Prices, Amounts, 0, Total),
    writeln(Total).

totalCost([], [], TotalSoFar, TotalSoFar).
totalCost([P|Prices], [A|Amounts], TotalSoFar, EndTotal):-
    between(0, 10, A),
    Cost is P*A,
    TotalSoFar1 is TotalSoFar + Cost,
    totalCost(Prices, Amounts, TotalSoFar1, EndTotal).

I don't think that this is the best / most declarative solution that one can come up with. Does anyone have any suggestions for improvement? Thanks in advance!

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

不气馁 2024-11-21 05:54:21

既然你提到了 SWI-Prolog 为什么不

?- use_module(library(clpfd)).

library( lambda)

?- Total = 1505, Prices = [215, 275, 335, 355, 420, 580],
      maplist(\P^A^M^(P*A #= M, A #>=0),Prices,Amounts,Ms),
      sum(Ms, #=, Total).

通过说明这一点,列表 Amounts 中的所有变量都在有限范围内。因此,无需对上限进行“数学计算”(无论如何,这经常会出错)。
要查看具体的解决方案,需要labeling/2:

?- Total = 1505, Prices = [215, 275, 335, 355, 420, 580],
      maplist(\P^A^M^(P*A #= M, A #>=0),Prices,Amounts,Ms),
      sum(Ms, #=, Total),
      labeling([], Amounts).
   Total = 1505, Prices = [215,275,335,355,420,580],
   Amounts = [1,0,0,2,0,1], Ms = [215,0,0,710,0,580]
;  Total = 1505, Prices = [215,275,335,355,420,580],
   Amounts = [7,0,0,0,0,0], Ms = [1505,0,0,0,0,0].

Since you mention SWI-Prolog why not

?- use_module(library(clpfd)).

and library(lambda)

?- Total = 1505, Prices = [215, 275, 335, 355, 420, 580],
      maplist(\P^A^M^(P*A #= M, A #>=0),Prices,Amounts,Ms),
      sum(Ms, #=, Total).

By stating this, all variables in the list Amounts are in a finite range. So there is no need to "do the math" for an upper bound (which often goes wrong anyway).
To see concrete solutions, labeling/2 is needed:

?- Total = 1505, Prices = [215, 275, 335, 355, 420, 580],
      maplist(\P^A^M^(P*A #= M, A #>=0),Prices,Amounts,Ms),
      sum(Ms, #=, Total),
      labeling([], Amounts).
   Total = 1505, Prices = [215,275,335,355,420,580],
   Amounts = [1,0,0,2,0,1], Ms = [215,0,0,710,0,580]
;  Total = 1505, Prices = [215,275,335,355,420,580],
   Amounts = [7,0,0,0,0,0], Ms = [1505,0,0,0,0,0].
诠释孤独 2024-11-21 05:54:21

任何具有几天以上经验的 Prolog 程序员都应该能够理解您的生成和测试方法。这里有一些小的调整:

go(Amounts) :-
    Prices = [580, 420, 355, 335, 275, 215],
    totalCost(Prices, Amounts, 0, 1505),
    write(Amounts), nl.

totalCost([], [], Total, Total).
totalCost([P|Prices], [A|Amounts], SoFar, Total):-
    Upper is (Total-SoFar)//P,
    between(0,Upper,A),
    SoNear is SoFar + P*A,
    totalCost(Prices, Amounts, SoNear, Total).

我将 go/0 更改为 go/1,以便 Prolog 引擎回溯并生成所有解决方案(有两个)。可以省略对 length/2 的调用,因为 totalCost/4 负责构建列表 Amounts 使其与 Prices 具有相同的长度。我使用了 write/1nl/0 来使其更加便携。

totalCost/4 中,我缩短了一些变量/参数名称,并为累加器参数使用了一个有点搞笑的名称。我检查累加器不超过所需 Total 的方式使用了对 Between/3 的原始调用,但使用了计算出的上限而不是常量。在我的机器上,它将运行时间从几分钟缩短到几秒钟。

补充:我应该在这里提到我在上面的评论中所说的内容,菜单项现在按从最贵到最便宜的顺序排列。使用 SWI-Prolog 的 time/1 谓词表明,这将工作量从 1,923 次推理减少到 1,070 次推理。主要的改进(速度)来自于对 A 使用计算边界,而不是对每个项目使用 0 到 10 的范围。

time((go(A),false)).

请注意复合目标周围的额外括号,否则 SWI-Prolog 认为我们正在调用未定义的 time/2 谓词。

Your generate-and-test approach should be intelligible to any Prolog programmer with more than a few days experience. Here are some minor tweaks:

go(Amounts) :-
    Prices = [580, 420, 355, 335, 275, 215],
    totalCost(Prices, Amounts, 0, 1505),
    write(Amounts), nl.

totalCost([], [], Total, Total).
totalCost([P|Prices], [A|Amounts], SoFar, Total):-
    Upper is (Total-SoFar)//P,
    between(0,Upper,A),
    SoNear is SoFar + P*A,
    totalCost(Prices, Amounts, SoNear, Total).

I changed go/0 to go/1 so that the Prolog engine will backtrack and produce all the solutions (there are two). The calls to length/2 could be omitted because totalCost/4 does the work of building list Amounts to have equal length with Prices. I used write/1 and nl/0 to make it a little more portable.

In totalCost/4 I shortened some of the variable/argument names and indulged in a slightly jokey name for the accumulator argument. The way I imposed the check that our accumulator doesn't exceed the desired Total uses your original call to between/3 but with a computed upper bound instead of a constant. On my machine it reduced the running time from minutes to seconds.

Added: I should mention here what was said in my comment above, that the menu items are now ordered from most expensive to least. Using SWI-Prolog's time/1 predicate shows this reduces the work from 1,923 inferences to 1,070 inferences. The main improvement (in speed) comes from using computed bounds on A rather than range 0 to 10 for every item.

time((go(A),false)).

Note the extra parentheses around the compound goal, as otherwise SWI-Prolog thinks we are calling an undefined time/2 predicate.

心欲静而疯不止 2024-11-21 05:54:21

可以简单地用 clpBNR 表达:

go :-
    Amounts = [A,B,C,D,E,F],
    Amounts::integer(0, _),
    { (A*215) + (B*275) + (C*335) + (D*355) + (E*420) + (F*580) == 1505 },
    solve(Amounts),
    writeln(Amounts).

swi-prolog 中的结果:

?- time(go).
[1,0,0,2,0,1]
% 35,063 inferences, 0.014 CPU in 0.014 seconds (99% CPU, 2483361 Lips)
true ;
[7,0,0,0,0,0]
% 50,954 inferences, 0.023 CPU in 0.023 seconds (100% CPU, 2262260 Lips)
true.

Can express simply in clpBNR:

go :-
    Amounts = [A,B,C,D,E,F],
    Amounts::integer(0, _),
    { (A*215) + (B*275) + (C*335) + (D*355) + (E*420) + (F*580) == 1505 },
    solve(Amounts),
    writeln(Amounts).

Result in swi-prolog:

?- time(go).
[1,0,0,2,0,1]
% 35,063 inferences, 0.014 CPU in 0.014 seconds (99% CPU, 2483361 Lips)
true ;
[7,0,0,0,0,0]
% 50,954 inferences, 0.023 CPU in 0.023 seconds (100% CPU, 2262260 Lips)
true.
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文