RSolve 无法求解离散 Rossler 系统
我正在研究混沌吸引子,并测试一些连续的->离散等价。我已经用这种方式对 Rossler 系统进行了连续模拟
a = 0.432; b = 2; c = 4;
Rossler = {
x'[t] == -y[t] - z[t],
y'[t] == x[t] + a*y[t],
z'[t] == b + x[t]*z[t]-c*z[t]};
sol = NDSolve[
{Rossler, x[0] == y[0] == z[0] == 0.5},
{x, y, z}, {t,500}, MaxStepSize -> 0.001, MaxSteps -> Infinity]
现在,当尝试使用 RSolve 评估离散等效系统时,Mma 没有做任何事情,甚至没有错误,它只是无法解决它。
RosslerDiscreto = {
x[n + 1] == x[n] - const1*(y[n] + z[n]),
y[n + 1] == 1 - a*const2)*y[n] + const2*x[n],
z[n + 1] == (z[n]*(1 - const3) + b*const3)/(1 - const3*x[n])}
我想知道 RSolve 是否有一个数值函数,类似于 DSolve 的 NDSolve 。 我知道我可以用一些 For[] 循环进行计算,只是想知道是否存在这样的函数。
I'm working with chaotic attractors, and testing some continuous-> discrete equivalences. I've made a continuous simulation of the Rossler system this way
a = 0.432; b = 2; c = 4;
Rossler = {
x'[t] == -y[t] - z[t],
y'[t] == x[t] + a*y[t],
z'[t] == b + x[t]*z[t]-c*z[t]};
sol = NDSolve[
{Rossler, x[0] == y[0] == z[0] == 0.5},
{x, y, z}, {t,500}, MaxStepSize -> 0.001, MaxSteps -> Infinity]
Now, when trying to evaluate a discrete equivalent system with RSolve, Mma doesn't do anything, not even an error, it just can't solve it.
RosslerDiscreto = {
x[n + 1] == x[n] - const1*(y[n] + z[n]),
y[n + 1] == 1 - a*const2)*y[n] + const2*x[n],
z[n + 1] == (z[n]*(1 - const3) + b*const3)/(1 - const3*x[n])}
I want to know if there is a numerical function for RSolve, analogous as the NDSolve is for DSolve.
I know i can make the computation with some For[] cycles, just want to know if it exists such function.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
RecurrenceTable
是 RSolve 的数字模拟:RecurrenceTable
is the numeric analogue to RSolve: