手部特征识别
给定一张手的照片,我试图确定定位连接手指的手掌位置的最合适方法。 (即手掌上距离手掌中心最远的位置,基本上是在手指之间。)
我一直在考虑一些可能的编码方法,特别是主动形状建模。然而,主动形状建模似乎有点矫枉过正,因为我需要的只是找到这些关键点,而不是跟踪它们的运动。我想知道熟悉特征识别的人是否可以提出更合适的技术。谢谢。
Given a photograph of a hand, I'm trying to determine the most appropriate method for locating the positions of the palm connecting the fingers. (i.e the location on the palm furthest from the center of the palm, essentially between the fingers.)
I've been thinking about some of the possible ways of coding this, in particular active shape modelling. However, it seems like active shape modelling would be overkill since all I need is to locate those key points, not to track their movement. I was wondering if anybody familiar with feature identification could suggest a more appropriate technique. Thanks.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
下面是一些使用 pymorph 和 mahotas 编写的 python 示例代码。使用 opencv 重新创建应该相当简单。如果可能的话,我会选择不同的背景,远离肤色的背景会简化初始阈值处理。
Here is some sample code in python, using pymorph and mahotas. It should be fairly trivial to recreate with opencv. If possible I would choose a different background, something farther from skin tone would simplify the initial thresholding.