除了对完整性的要求之外,B 树和 B* 树还有什么区别?
我知道这个问题,但它是关于B-tree 和 B+-tree。抱歉,如果有类似的 B*-tree
,但我找不到这样的。
那么,这两棵树有什么区别呢?关于 B*-tree 的维基百科文章
非常短。
此处指出的唯一区别是“非根节点至少为 2/3,而不是 1/2”。但我想还有更多的东西......可能只有一种树 - B 树,只是具有不同的常量(为了每个非根节点的完整性),并且没有两种不同的树,如果这是唯一的区别,对吗?
另外,还有一件事让我想到了更多差异:
"A B*-tree should not be confused with a B+ tree, which is one where the
leaf nodes of the tree are chained together in the form of a linked list"
因此,B+-tree 有一些非常具体的东西 - 链表。 B*-tree
有什么具体特征,或者没有这样的特征?
此外,维基百科的文章中没有任何外部链接/引用。有资源吗?文章、教程,什么?
谢谢!
I know about this question, but it's about B-tree and B+-tree. Sorry, if there's similar for B*-tree
, but I couldn't find such.
So, what is the difference between these two trees? The wikipedia article about B*-trees
is very short.
The only difference, that is noted there, is "non-root nodes to be at least 2/3 full instead of 1/2"
. But I guess there's something more.. There could be just one kind of tree - the B-tree
, just with different constants (for the fullness of each non-root node), and no two different trees, if this was the only difference, right?
Also, one more thing, that made me thing about more differences:
"A B*-tree should not be confused with a B+ tree, which is one where the
leaf nodes of the tree are chained together in the form of a linked list"
So, B+-tree
has something really specific - the linked list. What is the specific characteristic of B*-tree
, or there isn't such?
Also, there are no any external links/references in the wikipedia's article. Are there any resources at all? Articles, tutorials, anything?
Thanks!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
已编辑
除了分钟之外没有区别。填充因子。
第 489 页
(来源:mit.edu)
从上面的书来看,
Knuth 也完全像这样定义了 B* 树(《计算机编程的艺术》,第 3 卷)。
“无处不在的 B 树”在 B 上有一个完整的小节-树*。在这里,Comer 与 Knuth 和 Corment 等人完全相同地定义了 B-tree* 树。但也澄清了混乱的来源 --B-tree* 树搜索算法和一些未命名的 B Knuth 设计的树变体现在称为 B+-树。
Edited
No difference other than min. fill factor.
Page #489
(source: mit.edu)
From the above book,
Knuth also defines the B* tree exactly like that (The art of computer programming, Vol. 3).
"The Ubiquitous B-Tree" has a whole sub-section on B-trees*. Here, Comer defines the B-tree* tree exactly as Knuth and Corment et al. do but also clarifies where the confusion comes from --B-tree* tree search algorithms and some unnamed B tree variants designed by Knuth which are now called B+-trees.
也许您应该看看 Comer 的《Ubiquitous B-Tree》(ACM 计算调查,1979 年)。
Comer 在那里写了一些关于 B*Tree 的内容(在 B-Tree 及其变体部分)。在该部分中,他还引用了更多有关该主题的论文。这应该可以帮助您自己进行进一步的调查:)! (我不是你的研究员;))
但是,我不明白你引用的一部分说 B*Tree 在叶节点级别没有链表。我很确定,这些节点也链接在一起。
关于只有一棵 B 树。事实上,你有这个。其他的如B+Tree、Prefix B+Tree等只是标准B-Tree的变体。只要看看论文《无处不在的 B 树》即可。
Maybe you should look at Ubiquitous B-Tree by Comer (ACM Computing Surveys, 1979).
Comer writes there something about the B*Tree (In the section B-Tree and its variants). And in that section, he also cites some more paper about that topic. That should help you to do further investigations on your own :)! (I'm not your researcher ;) )
However, I don't understand the point where you cite a part which says that the B*Tree does not have a linked list in the leaf node level. I'm pretty sure, that also those nodes are linked together.
Regarding having only one B-Tree. Actually, you have that. The other ones like B+Tree, Prefix B+Tree and so on are just variants of the standard B-Tree. Just look at the paper Ubiquitous B-Tree.