从多个集合中获取特定元素组合的排名的算法

发布于 2024-11-10 17:12:04 字数 717 浏览 4 评论 0原文

我有一堆集合,比如 S1、S2、S3……每个集合都有不同的元素。假设 S1 = { A, B, C}, S2 = { X, Y }, S3 = { P, Q, R, T }

存在这些集合的组合 K = { S1, S2, S3 }。例如,此组合的一个实例是 { A, X, P }。显然有 3 x 2 x 4 = 24 种可能的组合。我需要的是特定组合的“排名”,使用从左到右的简单有序枚举来计算,反之亦然。

显然,我可以通过简单地枚举所有组合并将其与请求的组合进行比较,同时保留计数器来轻松计算,但我需要一个有效的算法,因为我的集合每个最多可以包含 20000 个元素,以及某些情况下组合集合的数量是> 10.

顺便说一句,我知道线程计算组合的排名?在这里堆栈溢出。但不幸的是,它在这里不适用,因为我的组合是由不同位置的不同大小的集合组成的,

我希望用 C# 实现,但其他语言或伪代码也会非常有帮助。

任何建议,请

凯末尔

更新: @spinning_plane & @aasmund。谢谢您的回答。他们都为我提供了相同的排名计算公式。

但是,我还需要相反的方式。即获得给定排名(从零开始)的组合。例如,给定排名 0,结果将是 {A,X,P} ,对于 3 {A, X, R } 等。请问有人有算法吗?

I have a bunch of sets say S1, S2, S3, ... Each set have different elements. Say S1 = { A, B, C}, S2 = { X, Y }, S3 = { P, Q, R, T }

There exists a combination of these sets K = { S1, S2, S3 }. For example, an instance of this combination would be { A, X, P }. There are obviously 3 x 2 x 4 = 24 combinations possible. What I need is the "rank" of a particular combination, calculated using simple ordered enumeration from left to right, and the vice versa.

Obviously, I can calculate this easily by simply enumerating all the combinations and comparing it to the requested combination while keeping a counter, but I need an efficient algorithm as my sets can contain up to 20000 elements each, and number of combined sets for some case are > 10.

BTW, I am aware of the thread Compute rank of a combination? here in stack overflow. But, unfortunately, it is not applicable here as my combinations are made out of different sized sets for different positions

I would appreciate an implementation in C# but other languages or pseudo-code would also be very helpful.

Any suggestions, please

kemal

UPDATE:
@spinning_plane & @aasmund. Thank you for the answers. They both provide me with the same formula for calculating the rank.

But, I also need the other way around. i.e. to get the combination for a given rank (zero based). For example, given the rank 0, the result would be {A,X,P} ,for 3 {A, X, R }, etc. Anyone with an algorithm, please?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

稀香 2024-11-17 17:12:04

将您的集合视为一个数字,其每个数字的可能值就是关联集合的大小。为了看到这一点,假设每个集合 S1...S3 的大小相同,为简单起见,假设为 2。要计算该集合的排名,您只需将 K 解释为二进制数并将其转换为以 10 为底的等值。 rank(x) 只是集合中元素的从 0 开始的索引。

rank(A)*2^0 + rank(X)*2^1 + rank(P)*2^2

现在,为了将其推广到集合可以具有不同大小的情况,我们可以

rank(A) + rank(X)*len(S1) + rank(P)*len(S2)*len(S1) ... etc.

在伪代码中写出计算表达式

input = {'a','b','x'}
output = 0;
cumulative = 1;
for i in range(len(K)):
     output += cumulative*rank(input[i],K[i]) # this returns the index of input[i] in set K[i]
     cumulative*=len(K[i])

Think of your set as a number whose possible values for each digit is the size of the associated set. To see this, supposing the size of each set S1...S3 is the same, say 2 for simplicity. To calculate the rank of the set, you would simply interpret K as a binary number and translate it to its base-10 equivalent. rank(x) is simply the 0 based index of the element in the set.

rank(A)*2^0 + rank(X)*2^1 + rank(P)*2^2

Now to generalize this to the case when the sets can be different size, we can write out an expression for the calculation

rank(A) + rank(X)*len(S1) + rank(P)*len(S2)*len(S1) ... etc.

In psuedo-code

input = {'a','b','x'}
output = 0;
cumulative = 1;
for i in range(len(K)):
     output += cumulative*rank(input[i],K[i]) # this returns the index of input[i] in set K[i]
     cumulative*=len(K[i])
南…巷孤猫 2024-11-17 17:12:04

这就是完整的“排名序列”吗?

0: {A, X, P}
1: {A, X, Q}
2: {A, X, R}
3: {A, X, S}
4: {A, Y, P}
5: {A, Y, Q}
...

如果是这样,则让集合从右到左编号为S1S2,...,Sn,并让在自己的集合中选择的元素(例如 A=0、B=1、C=2)为 r1r2、...、rn。那么公式应该是

rn * |S(n-1)| * ... * |S2| * |S1| + ... + r3 * |S2| * |S1| + r2 * |S1| + r1

为什么?假设我们选择{C, Y, Q}。他们在各自集合中的从零开始的排名分别是 2、1 和 2。因为最左边的排名是 2,这意味着为了达到排名序列的那部分,我们需要让最右边和中间的位置执行两轮完整的“回合”,总共(在本例中)r2 * |S2| * |S1| = 2 * 2 * 4 = 16 行。然后,我们必须跳过最右边位置的一轮才能到达 Y,依此类推。

编辑:该公式可以简化为

(((...) * |S3| + r3) * |S2| + r2) * |S1| + r1

(并且它当然应该以这种方式计算)。顺便说一句,请注意整数溢出......

Is this what the full "ranked sequence" look like?

0: {A, X, P}
1: {A, X, Q}
2: {A, X, R}
3: {A, X, S}
4: {A, Y, P}
5: {A, Y, Q}
...

If so, let the sets be numbered from right to left as S1, S2, ..., Sn, and let the ranks of the chosen elements within their own sets (e.g. A=0, B=1, C=2) be r1, r2, ..., rn. The formula should then be

rn * |S(n-1)| * ... * |S2| * |S1| + ... + r3 * |S2| * |S1| + r2 * |S1| + r1

Why? Let's say that we pick {C, Y, Q}. Their zero-based ranks within their respective sets are 2, 1, and 2, respectively. Because the leftmost rank is 2, it means that in order to get to that part of the ranking sequence, we need to let the rightmost and middle positions perform two full "rounds", for a total of (in this case) r2 * |S2| * |S1| = 2 * 2 * 4 = 16 rows. Then, we must skip past 1 round of the rightmost position in order to reach Y, and so on.

Edit: The formula can be simplified to

(((...) * |S3| + r3) * |S2| + r2) * |S1| + r1

(and it certainly ought to be computed in that way). Watch out for integer overflow, by the way...

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文