Python 字符串溢出?

发布于 2024-11-10 15:11:44 字数 523 浏览 8 评论 0原文

由于某种原因,下面的结果是 0 的输出。我正在使用一个非常大的字符串(100,000 个字符),并寻找一个大整数,以千亿为单位,例如 500,000,000,000。我需要做一些特别的事情吗?目标是找出 pi 的前 100,000 位中 1、2、3 的子序列的个数。我知道下面的算法在算法上是正确的。这只是“代码不正确”。

pi100k = "3.14159[100,000 digits of pi]"
subSeqInit = 0
subSeqPair = 0
subSeqTotal = 0

for c in pi100k:
    if c == 1:
        subSeqInit = subSeqInit + 1
    elif c == 2 and subSeqInit > 0:
        subSeqPair = subSeqPair + 1
    elif c == 3 and subSeqTotal > 0:
        subSeqTotal = subSeqTotal + 1

print(subSeqTotal)

For some reason, the below results in an output of 0. I'm using a very large string (100,000 characters), and looking for a large integer, in the hundred billions, e.g 500,000,000,000. Is there something special I need to do? The goal is to find the number of sub-sequences of 1,2,3 in the first 100,000 digits of pi. I know the below is algorithmically correct. It's just not "code-correct."

pi100k = "3.14159[100,000 digits of pi]"
subSeqInit = 0
subSeqPair = 0
subSeqTotal = 0

for c in pi100k:
    if c == 1:
        subSeqInit = subSeqInit + 1
    elif c == 2 and subSeqInit > 0:
        subSeqPair = subSeqPair + 1
    elif c == 3 and subSeqTotal > 0:
        subSeqTotal = subSeqTotal + 1

print(subSeqTotal)

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

最简单、最快的方法可能是这样的:

subSeqTotal = pi100k.count("123")

The simplest and fastest way is probably this:

subSeqTotal = pi100k.count("123")
飘过的浮云 2024-11-17 15:11:44
pi100k = "3.14159[100,000 digits of pi]"
subSeqInit = 0
subSeqTotal = 0

for c in pi100k:
    if c == '1':
        subSeqInit = 1
    elif c == '2' and subSeqInit == 1:
        subSeqInit = 2
    elif c == '3' and subSeqTotal == 2:
        subSeqTotal = subSeqTotal + 1
        subSeqInit = 0

print(subSeqTotal)

Python 不会将字符串字符隐式转换为整数。此外,你的算法并不健全,我上面的算法会更好。

编辑:

您可以通过使用正则表达式模块来缩短此时间

import re
subSeqTotal = len(re.findall('123',pi100k))\

编辑2:正如 MRAB 指出的,最好使用的是 pi100k.count('123')

pi100k = "3.14159[100,000 digits of pi]"
subSeqInit = 0
subSeqTotal = 0

for c in pi100k:
    if c == '1':
        subSeqInit = 1
    elif c == '2' and subSeqInit == 1:
        subSeqInit = 2
    elif c == '3' and subSeqTotal == 2:
        subSeqTotal = subSeqTotal + 1
        subSeqInit = 0

print(subSeqTotal)

Python does not implicitly convert string characters to integers. Furthermore, your algorithm is not sound, what I have above will work better.

EDIT:

You could make this much shorter by using the regular expression module

import re
subSeqTotal = len(re.findall('123',pi100k))\

EDIT 2: As MRAB pointed out the best thing to use is pi100k.count('123')

∞琼窗梦回ˉ 2024-11-17 15:11:44

看来这些解决方案都不正确。我认为他们没有正确搜索子序列。

我用 C 语言递归地解决了这个问题,使用了这个算法:

/* global cstring for our pi data */
const char *g_numbers = 3.14........[100,000 digits];

/* global to hold our large total : some compilers don't support uint64_t */
uint64_t  g_total = 0;


/* recursively compute the subsequnces of 1-2-3 */
void count_sequences(const char c, unsigned int index)
{
    while (index < 100000){
        switch (g_numbers[index]){
            case '1': if (c == '1') count_sequences('2', index+1); break;
            case '2': if (c == '2') count_sequences('3', index+1); break;
            case '3': 
                      if (c == '3'){
                        g_total++;
                        count_sequences('3', index+1);
                        return;
                      }
            default: break;
        }
        index++;
    }
}

抱歉,我无法给出 Python 解决方案——但我希望这会有所帮助。重新工作应该不会太难。我在Python中尝试了给出的答案,但它们似乎不起作用。

It appears none of these solutions are correct. I don't think they search for the sub-sequence correctly.

I solved it recursively in C, with this algorithm:

/* global cstring for our pi data */
const char *g_numbers = 3.14........[100,000 digits];

/* global to hold our large total : some compilers don't support uint64_t */
uint64_t  g_total = 0;


/* recursively compute the subsequnces of 1-2-3 */
void count_sequences(const char c, unsigned int index)
{
    while (index < 100000){
        switch (g_numbers[index]){
            case '1': if (c == '1') count_sequences('2', index+1); break;
            case '2': if (c == '2') count_sequences('3', index+1); break;
            case '3': 
                      if (c == '3'){
                        g_total++;
                        count_sequences('3', index+1);
                        return;
                      }
            default: break;
        }
        index++;
    }
}

Sorry I can't hand out the Python solution-- but I hope this helps. It shouldn't be too hard to re-work. I tried the given answers in Python and they didn't seem to work.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文