U 矩阵和自组织映射
我正在尝试理解 SOM。当人们发布代表的图像时,我感到很困惑 数据图像让我使用 SOM 将数据映射到地图空间。据说用的是U矩阵。但是我们的神经元网格是有限的,那么如何获得“连续”图像呢? 例如,从 40x40 网格开始,有 1600 个神经元。现在计算 U 矩阵,但现在如何绘制这些数字以实现可视化? 链接:
I am trying to understand SOMs. I am confused about when people post images representing
the image of data gotten my using SOM to map data to the map space. It is said that the U-matrix is used. But we have a finite grid of neurons so how do you get a "continous" image ?
For example starting with a 40x40 grid there are 1600 neurons. Now compute U-matrix but how do you plot these numbers now to get visualization ?
Links:
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
U 矩阵代表统一距离,并且在每个单元中包含相邻单元之间的欧几里德距离(在输入空间中)。该矩阵中的小值意味着 SOM 节点在输入空间中靠近,而较大的值意味着 SOM 节点相距很远,即使它们在输出空间中很靠近。因此,U 矩阵可以看作是二维空间中输入矩阵的概率密度函数的总结。通常,这些距离值是离散的,根据强度进行颜色编码,并显示为一种热图 。
引用Matlab SOM工具箱,
除了SOM工具箱之外,您还可以看看kohonen R 包(请参阅
help(plot.kohonen)
并使用type="dist.neighbours"
)。The U-matrix stands for unified distance and contains in each cell the euclidean distance (in the input space) between neighboring cells. Small values in this matrix mean that SOM nodes are close together in the input space, whereas larger values mean that SOM nodes are far apart, even if they are close in the output space. As such, the U-matrix can be seen as summary of the probability density function of the input matrix in a 2D space. Usually, those distance values are discretized, color-coded based on intensity and displayed as a kind of heatmap.
Quoting the Matlab SOM toolbox,
Apart from the SOM toolbox, you may have a look at the kohonen R package (see
help(plot.kohonen)
and usetype="dist.neighbours"
).