需要从成员可能连接的集合列表中创建集合列表

发布于 2024-11-10 03:04:31 字数 754 浏览 4 评论 0原文

我在这里实时处理多边形数据,但问题非常简单。 我有一个包含数千组多边形不定数(整数)的巨大列表,我需要尽可能“快速”地将列表简化为“连接”不数集的列表。 即任何包含也在另一个集合中的整数的集合在结果中成为一个集合。我读过几种可能的解决方案,涉及集合和集合。我所追求的只是具有一定程度的共性的集合的最终列表。

我在这里处理大量数据,但为了简单起见,这里有一些示例数据:

setA = set([0,1,2])
setB = set([6,7,8,9])
setC = set([4,5,6])
setD = set([3,4,5,0])
setE = set([10,11,12])
setF = set([11,13,14,15])
setG = set([16,17,18,19])

listOfSets = [setA,setB,setC,setD,setE,setF,setG]

在这种情况下,我正在寻找一个结果如下的列表,尽管顺序无关:

connectedFacesListOfSets = [ set([0,1,2 ,3,4,5,6,7,8,9]), set([10,11,12,13,14,15]), set([16,17,18,19])]

我已经寻找类似的解决方案,但得票最高的解决方案在我的大型测试数据上给出了错误的结果。

合并共享公共元素的列表

I'm dealing with polygonal data in realtime here, but the problems quite simple.
I have a huge list containing thousands of sets of polygon Indecies (Integers) and I need to simplify the list as "fast" as possible into a list of sets of "connected" Indecies.
i.e. Any sets containing integers that are also in another set become one set in the result. I've read several possible solutions involving sets & graphs etc. All i'm after are a final list of sets which had any degree of commonality.

I'm dealing with lots of data here, but for simplicities sake here's some sample data:

setA = set([0,1,2])
setB = set([6,7,8,9])
setC = set([4,5,6])
setD = set([3,4,5,0])
setE = set([10,11,12])
setF = set([11,13,14,15])
setG = set([16,17,18,19])

listOfSets = [setA,setB,setC,setD,setE,setF,setG]

In this case I'm after a list with a result like this, although ordering is irrelevant:

connectedFacesListOfSets = [ set([0,1,2,3,4,5,6,7,8,9]), set([10,11,12,13,14,15]), set([16,17,18,19])]

I've looked for similar solutions, but the one with the highest votes gave incorrect results on my large test data.

Merge lists that share common elements

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(5

So尛奶瓶 2024-11-17 03:04:31

如果没有足够大的集合,很难判断性能,但可以从以下一些基本代码开始:

while True:
    merged_one = False
    supersets = [listOfSets[0]]

    for s in listOfSets[1:]:
        in_super_set = False
        for ss in supersets:
            if s & ss:
               ss |= s
               merged_one = True
               in_super_set = True
               break

        if not in_super_set:
            supersets.append(s)

    print supersets
    if not merged_one:
        break

    listOfSets = supersets       

这对所提供的数据进行 3 次迭代。输出如下:

[set([0, 1, 2, 3, 4, 5]), set([4, 5, 6, 7, 8, 9]), set([10, 11, 12, 13, 14, 15]), set([16, 17, 18, 19])]
[set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), set([10, 11, 12, 13, 14, 15]), set([16, 17, 18, 19])]
[set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), set([10, 11, 12, 13, 14, 15]), set([16, 17, 18, 19])]

It's hard to tell the performance without a sufficiently large set, but here is some basic code to start from:

while True:
    merged_one = False
    supersets = [listOfSets[0]]

    for s in listOfSets[1:]:
        in_super_set = False
        for ss in supersets:
            if s & ss:
               ss |= s
               merged_one = True
               in_super_set = True
               break

        if not in_super_set:
            supersets.append(s)

    print supersets
    if not merged_one:
        break

    listOfSets = supersets       

This works in 3 iterations on the provided data. And the output is as follows:

[set([0, 1, 2, 3, 4, 5]), set([4, 5, 6, 7, 8, 9]), set([10, 11, 12, 13, 14, 15]), set([16, 17, 18, 19])]
[set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), set([10, 11, 12, 13, 14, 15]), set([16, 17, 18, 19])]
[set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), set([10, 11, 12, 13, 14, 15]), set([16, 17, 18, 19])]
少钕鈤記 2024-11-17 03:04:31

这是一个联合查找问题。

虽然我没有使用过,但这个 Python 代码对我来说看起来不错。

http://code.activestate.com/recipes/577225-union-find/

This is a union find problem.

Though I haven't used it, this Python code looks good to me.

http://code.activestate.com/recipes/577225-union-find/

雨巷深深 2024-11-17 03:04:31

原谅乱七八糟的大写(自动更正......):

# the results cotainer
Connected = set()

sets = # some list of sets

# convert the sets to frozensets (which are hashable and can be added to sets themselves)
Sets = map(frozenset, sets)

for s1 in sets:
    Res = copy.copy(s1)
    For s2 in sets:
        If s1 & s2:
            Res = res | s2
    Connected.add(res)  

Forgive the messed up caps (autocorrect...):

# the results cotainer
Connected = set()

sets = # some list of sets

# convert the sets to frozensets (which are hashable and can be added to sets themselves)
Sets = map(frozenset, sets)

for s1 in sets:
    Res = copy.copy(s1)
    For s2 in sets:
        If s1 & s2:
            Res = res | s2
    Connected.add(res)  
ら栖息 2024-11-17 03:04:31

所以..我想我明白了。这是一团乱,但我明白了。这就是我所做的:

def connected_valid(li):
    for i, l in enumerate(li):
        for j, k in enumerate(li):
            if i != j and contains(l,k):
                return False
    return True

def contains(set1, set2):
    for s in set1:
        if s in set2:
            return True
    return False

def combine(set1, set2):
    set2 |= set1
    return set2

def connect_sets(li):
    while not connected_valid(li):
        s1 = li.pop(0)
        s2 = li[0]
        if contains(s1, s2):
            li[0] = combine(s1,s2)
        else:
            li.append(s1)
    return li

然后在主函数中你会做这样的事情:

setA = set([0,1,2])
setB = set([6,7,8,9])
setC = set([4,5,6])
setD = set([3,4,5,0])
setE = set([10,11,12])
setF = set([11,13,14,15])
setG = set([16,17,18,19])

connected_sets = connect_sets([setA,setB,setC,setD,setE,setF,setG,])

运行它后,我得到以下输出

print connected_sets
[set([0,1,2,3,4,5,6,7,8,9]), set([10,11,12,13,14,15]), set([16,17,18,19])]

希望这就是你正在寻找的。

编辑:添加代码以随机生成集合:

# Creates a list of 4000 sets with a random number of values ranging from 0 to 20000
sets = []
ma = 0
mi = 21000
for x in range(4000):
    rand_num = sample(range(20),1)[0]
    tmp_set_li = sample(range(20000), rand_num)
    sets.append(set(tmp_set_li))

如果您确实愿意,最后 3 行可以压缩为一行。

So.. I think I got it. It's a mess but I got it. Here's what I did:

def connected_valid(li):
    for i, l in enumerate(li):
        for j, k in enumerate(li):
            if i != j and contains(l,k):
                return False
    return True

def contains(set1, set2):
    for s in set1:
        if s in set2:
            return True
    return False

def combine(set1, set2):
    set2 |= set1
    return set2

def connect_sets(li):
    while not connected_valid(li):
        s1 = li.pop(0)
        s2 = li[0]
        if contains(s1, s2):
            li[0] = combine(s1,s2)
        else:
            li.append(s1)
    return li

Then in the main function you'd do something like this:

setA = set([0,1,2])
setB = set([6,7,8,9])
setC = set([4,5,6])
setD = set([3,4,5,0])
setE = set([10,11,12])
setF = set([11,13,14,15])
setG = set([16,17,18,19])

connected_sets = connect_sets([setA,setB,setC,setD,setE,setF,setG,])

After running it, I got the following output

print connected_sets
[set([0,1,2,3,4,5,6,7,8,9]), set([10,11,12,13,14,15]), set([16,17,18,19])]

Hope that's what you're looking for.

EDIT: Added code to randomly generate sets:

# Creates a list of 4000 sets with a random number of values ranging from 0 to 20000
sets = []
ma = 0
mi = 21000
for x in range(4000):
    rand_num = sample(range(20),1)[0]
    tmp_set_li = sample(range(20000), rand_num)
    sets.append(set(tmp_set_li))

The last 3 lines can be condensed into one if you really wanted to.

淡莣 2024-11-17 03:04:31

我尝试做一些不同的事情:这个算法为每个集合循环一次,为每个元素循环一次:

# Our test sets
setA = set([0,1,2])
setB = set([6,7,8,9])
setC = set([4,5,6])
setD = set([3,4,5,0])
setE = set([10,11,12])
setF = set([11,13,14,15])
setG = set([16,17,18,19])

list_of_sets = [setA,setB,setC,setD,setE,setF,setG]

# We will use a map to store our new merged sets.
# This map will work as an reference abstraction, so it will
# map set ids to the set or to other set id.
# This map may have an indirection level greater than 1
merged_sets = {}

# We will also use a map between indexes and set ids.
index_to_id = {}

# Given a set id, returns an equivalent set id that refers directly
# to a set in the merged_sets map
def resolve_id(id):
    if not isinstance(id, (int, long)):
        return None
    while isinstance(merged_sets[id], (int, long)):
        id = merged_sets[id]
    return id


# Points the informed set to the destination id
def link_id(id_source, id_destination):
    point_to = merged_sets[id_source]
    merged_sets[id_source] = id_destination
    if isinstance(point_to, (int, long)):
        link_id(point_to, id_destination)


empty_set_found = False
# For each set
for current_set_id, current_set in enumerate(list_of_sets):
    if len(current_set) == 0 and empty_set_found:
        continue
    if len(current_set) == 0:
        empty_set_found = True
    # Create a set id for the set and place it on the merged sets map
    merged_sets[current_set_id] = current_set
    # For each index in the current set
    possibly_merged_current_set = current_set
    for index in current_set:
        # See if the index is free, i.e., has not been assigned to any set id
        if index not in index_to_id:
            # If it is free, then assign the set id to the index
            index_to_id[index] = current_set_id
            # ... and then go to the next index
        else:
            # If it is not free, then we may need to merge the sets
            # Find out to which set we need to merge the current one,
            # ... dereferencing if necessary
            id_to_merge = resolve_id(index_to_id[index])
            # First we check to see if the assignment is to the current set or not
            if id_to_merge == resolve_id(merged_sets[current_set_id]):
                continue
            # Merge the current set to the one found
            print 'Merging %d with %d' % (current_set_id, id_to_merge)
            merged_sets[id_to_merge] |= possibly_merged_current_set
            possibly_merged_current_set = merged_sets[id_to_merge]
            # Map the current set id to the set id of the merged set
            link_id(current_set_id, id_to_merge)
# Return all the sets in the merged sets map (ignore the references)
print [x for x in merged_sets.itervalues() if not isinstance(x, (int, long))]

它打印:

Merging 2 with 1
Merging 3 with 0
Merging 3 with 1
Merging 5 with 4
[set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), set([10, 11, 12, 13, 14, 15]), set([16, 17, 18, 19])]

I tried to do something different: this algorithm loops once for each set and once for each element:

# Our test sets
setA = set([0,1,2])
setB = set([6,7,8,9])
setC = set([4,5,6])
setD = set([3,4,5,0])
setE = set([10,11,12])
setF = set([11,13,14,15])
setG = set([16,17,18,19])

list_of_sets = [setA,setB,setC,setD,setE,setF,setG]

# We will use a map to store our new merged sets.
# This map will work as an reference abstraction, so it will
# map set ids to the set or to other set id.
# This map may have an indirection level greater than 1
merged_sets = {}

# We will also use a map between indexes and set ids.
index_to_id = {}

# Given a set id, returns an equivalent set id that refers directly
# to a set in the merged_sets map
def resolve_id(id):
    if not isinstance(id, (int, long)):
        return None
    while isinstance(merged_sets[id], (int, long)):
        id = merged_sets[id]
    return id


# Points the informed set to the destination id
def link_id(id_source, id_destination):
    point_to = merged_sets[id_source]
    merged_sets[id_source] = id_destination
    if isinstance(point_to, (int, long)):
        link_id(point_to, id_destination)


empty_set_found = False
# For each set
for current_set_id, current_set in enumerate(list_of_sets):
    if len(current_set) == 0 and empty_set_found:
        continue
    if len(current_set) == 0:
        empty_set_found = True
    # Create a set id for the set and place it on the merged sets map
    merged_sets[current_set_id] = current_set
    # For each index in the current set
    possibly_merged_current_set = current_set
    for index in current_set:
        # See if the index is free, i.e., has not been assigned to any set id
        if index not in index_to_id:
            # If it is free, then assign the set id to the index
            index_to_id[index] = current_set_id
            # ... and then go to the next index
        else:
            # If it is not free, then we may need to merge the sets
            # Find out to which set we need to merge the current one,
            # ... dereferencing if necessary
            id_to_merge = resolve_id(index_to_id[index])
            # First we check to see if the assignment is to the current set or not
            if id_to_merge == resolve_id(merged_sets[current_set_id]):
                continue
            # Merge the current set to the one found
            print 'Merging %d with %d' % (current_set_id, id_to_merge)
            merged_sets[id_to_merge] |= possibly_merged_current_set
            possibly_merged_current_set = merged_sets[id_to_merge]
            # Map the current set id to the set id of the merged set
            link_id(current_set_id, id_to_merge)
# Return all the sets in the merged sets map (ignore the references)
print [x for x in merged_sets.itervalues() if not isinstance(x, (int, long))]

It prints:

Merging 2 with 1
Merging 3 with 0
Merging 3 with 1
Merging 5 with 4
[set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), set([10, 11, 12, 13, 14, 15]), set([16, 17, 18, 19])]
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文