合并多个不同列长度的 data.frames 并操作列
我使用 9 个具有不同数据的文件(每个组织的蛋白质数据)。每个文件代表不同的组织并具有蛋白质表达值(以数字形式)。我正在尝试将数据合并到一个 data.frame 中。我
read.delim("fileName.txt")
用于所有文件。之后,我使用了所有数据帧的列表
l <- list(data.frame1,..etc)
,然后我使用了 plyr 库和 do.call(rbind.fill,l)。
我的问题:
1)我希望循环遍历 9 个数据帧的列表,找到其中的唯一数据并将其绘制在直方图中。如果我发现多个具有相同名称但不同组织的条目,则应将其添加到直方图中,每个条目位于正确的组织标签上方。也就是说 - 我转到列表中的第一个 data.frame,从中取出第一个条目,搜索是否在其他 data.frame 中找到该条目,如果是,则将其添加到直方图中。
直方图的 x 轴有 9 个组织,y 轴是我的文件中的值。我不知道如何获取直方图(和代码)以适当地更改名称以及如何在正确的位置显示条形图。
此外,我不知道如何构建轴来获取每个条形下的组织名称。
我有一些基本代码没有做我想做的事:
i=1
for( val in list2[1:9] )
{
if( val appears in one of the other data.frames)
plot a bar over the correct tissue.
hist(val[i,8],breaks=11,col="blue",density=13,angle=45,
labels=c("Lung","ErythroleukemicCellLine","TCells","Blood","liver",
"BLimpho","pancreas","prostate","Bladder"), main=fileName[i,1])
dev.new() #each hist in a new window
i = i + 1
}
谢谢 yigeal
这是代码输出末尾的几行: 使用 read.delim("nameOfFile.txt") 读取文件后,
dput(BloodErythroleukemicCellLineFile)
"Tax_Id=9606 Gene_Symbol=ZNF589 Uncharacterized protein",
"Tax_Id=9606 Gene_Symbol=ZNF598 Isoform 1 of Zinc finger protein 598",
"Tax_Id=9606 Gene_Symbol=ZNF609 Zinc finger protein 609",
"Tax_Id=9606 Gene_Symbol=ZNF610 Isoform 1 of Zinc finger protein 610",
"Tax_Id=9606 Gene_Symbol=ZNF613 Isoform 1 of Zinc finger protein 613",
"Tax_Id=9606 Gene_Symbol=ZNF614 Zinc finger protein 614",
"Tax_Id=9606 Gene_Symbol=ZNF622 Zinc finger protein 622",
"Tax_Id=9606 Gene_Symbol=ZNF625 Zinc finger protein 625",
"Tax_Id=9606 Gene_Symbol=ZNF638 Isoform 1 of Zinc finger protein 638",
"Tax_Id=9606 Gene_Symbol=ZNF638 Isoform 4 of Zinc finger protein 638",
"Tax_Id=9606 Gene_Symbol=ZNF646 Isoform 1 of Zinc finger protein 646",
"Tax_Id=9606 Gene_Symbol=ZNF658B Zinc finger protein 658B",
"Tax_Id=9606 Gene_Symbol=ZNF667 Zinc finger protein 667, isoform CRA_a",
"Tax_Id=9606 Gene_Symbol=ZNF671 Zinc finger protein 671",
"Tax_Id=9606 Gene_Symbol=ZNF687 Isoform 1 of Zinc finger protein 687",
"Tax_Id=9606 Gene_Symbol=ZNF687 Zinc finger protein 687",
"Tax_Id=9606 Gene_Symbol=ZNF691 cDNA FLJ56317, highly similar to Zinc finger protein 691",
"Tax_Id=9606 Gene_Symbol=ZNF700 Zinc finger protein 700",
"Tax_Id=9606 Gene_Symbol=ZNF714 Isoform 1 of Zinc finger protein 714",
"Tax_Id=9606 Gene_Symbol=ZNF72 Zinc finger protein 72 (Fragment)",
"Tax_Id=9606 Gene_Symbol=ZNF721 zinc finger protein 721",
"Tax_Id=9606 Gene_Symbol=ZNF76 Isoform 2 of Zinc finger protein 76",
"Tax_Id=9606 Gene_Symbol=ZNF782 Zinc finger protein 782",
"Tax_Id=9606 Gene_Symbol=ZNF787 Zinc finger protein 787",
"Tax_Id=9606 Gene_Symbol=ZNF800 Zinc finger protein 800",
"Tax_Id=9606 Gene_Symbol=ZNF827 21 kDa protein", "Tax_Id=9606 Gene_Symbol=ZNF828 Zinc finger protein 828",
"Tax_Id=9606 Gene_Symbol=ZNF837 Zinc finger protein 837",
"Tax_Id=9606 Gene_Symbol=ZNF878 Zinc finger protein 878",
"Tax_Id=9606 Gene_Symbol=ZNF891 Zinc finger protein 891",
"Tax_Id=9606 Gene_Symbol=ZNHIT2 Zinc finger HIT domain-containing protein 2",
"Tax_Id=9606 Gene_Symbol=ZP2 Zona pellucida sperm-binding protein 2",
"Tax_Id=9606 Gene_Symbol=ZRANB2 Isoform 1 of Zinc finger Ran-binding domain-containing protein 2",
"Tax_Id=9606 Gene_Symbol=ZSWIM6 Zinc finger SWIM domain-containing protein 6",
"Tax_Id=9606 Gene_Symbol=ZUFSP 32 kDa protein", "Tax_Id=9606 Gene_Symbol=ZW10 Centromere/kinetochore protein zw10 homolog",
"Tax_Id=9606 Gene_Symbol=ZWINT ZW10 interactor", "Tax_Id=9606 Gene_Symbol=ZYG11B Isoform 1 of Protein zyg-11 homolog B",
"Tax_Id=9606 Gene_Symbol=ZYX cDNA FLJ53160, highly similar to Zyxin",
"Tax_Id=9606 Gene_Symbol=ZYX Uncharacterized protein", "Tax_Id=9606 Gene_Symbol=ZYX Zyxin"
), class = "factor")), .Names = c("proteinIdentifier", "protein",
"spectra", "unique_peptides", "FDR", "local_FDR", "sequence_coverage",
"expression_value", "expression_percentile", "organism", "tissue",
"localization", "condition", "experiment", "annotation"), class = "data.frame", row.names = c(NA,
-4802L))
它在控制台中的长度要长得多
I am using 9 files with different data (proteins per tissue data). Each file represents a different tissue and has values of proteins expression (as numbers). I am trying to merge the data into one data.frame. I used
read.delim("fileName.txt")
for all the files. After that, i used a list for all the data frames
l <- list(data.frame1,..etc)
Then I used the plyr library and the do.call(rbind.fill,l)
.
my questions:
1) I wish to loop through the list of 9 data.frames find the unique data in them and plot it in a histogram. If i find more than one entry with the same name but different tissue it should be added to the histogram each above the correct tissue label. That is - I go to the first data.frame in the list, from it I take out the first entry, search if this entry is found in one of the other data.frames and if so add it to the histogram.
The histogram has 9 tissues at the x axis and the y axis is the value from my files. I can't figure how to get the histogram (and the code) to change the name appropriately and how to display the bar in the correct place.
In addition i do not know how to build the axis to get the tissue names under each bar.
I have some basic code that is not doing what i want :
i=1
for( val in list2[1:9] )
{
if( val appears in one of the other data.frames)
plot a bar over the correct tissue.
hist(val[i,8],breaks=11,col="blue",density=13,angle=45,
labels=c("Lung","ErythroleukemicCellLine","TCells","Blood","liver",
"BLimpho","pancreas","prostate","Bladder"), main=fileName[i,1])
dev.new() #each hist in a new window
i = i + 1
}
thank you
yigeal
this are a few lines of the end of the output of the code:
after reading the file in with read.delim("nameOfFile.txt")
dput(BloodErythroleukemicCellLineFile)
"Tax_Id=9606 Gene_Symbol=ZNF589 Uncharacterized protein",
"Tax_Id=9606 Gene_Symbol=ZNF598 Isoform 1 of Zinc finger protein 598",
"Tax_Id=9606 Gene_Symbol=ZNF609 Zinc finger protein 609",
"Tax_Id=9606 Gene_Symbol=ZNF610 Isoform 1 of Zinc finger protein 610",
"Tax_Id=9606 Gene_Symbol=ZNF613 Isoform 1 of Zinc finger protein 613",
"Tax_Id=9606 Gene_Symbol=ZNF614 Zinc finger protein 614",
"Tax_Id=9606 Gene_Symbol=ZNF622 Zinc finger protein 622",
"Tax_Id=9606 Gene_Symbol=ZNF625 Zinc finger protein 625",
"Tax_Id=9606 Gene_Symbol=ZNF638 Isoform 1 of Zinc finger protein 638",
"Tax_Id=9606 Gene_Symbol=ZNF638 Isoform 4 of Zinc finger protein 638",
"Tax_Id=9606 Gene_Symbol=ZNF646 Isoform 1 of Zinc finger protein 646",
"Tax_Id=9606 Gene_Symbol=ZNF658B Zinc finger protein 658B",
"Tax_Id=9606 Gene_Symbol=ZNF667 Zinc finger protein 667, isoform CRA_a",
"Tax_Id=9606 Gene_Symbol=ZNF671 Zinc finger protein 671",
"Tax_Id=9606 Gene_Symbol=ZNF687 Isoform 1 of Zinc finger protein 687",
"Tax_Id=9606 Gene_Symbol=ZNF687 Zinc finger protein 687",
"Tax_Id=9606 Gene_Symbol=ZNF691 cDNA FLJ56317, highly similar to Zinc finger protein 691",
"Tax_Id=9606 Gene_Symbol=ZNF700 Zinc finger protein 700",
"Tax_Id=9606 Gene_Symbol=ZNF714 Isoform 1 of Zinc finger protein 714",
"Tax_Id=9606 Gene_Symbol=ZNF72 Zinc finger protein 72 (Fragment)",
"Tax_Id=9606 Gene_Symbol=ZNF721 zinc finger protein 721",
"Tax_Id=9606 Gene_Symbol=ZNF76 Isoform 2 of Zinc finger protein 76",
"Tax_Id=9606 Gene_Symbol=ZNF782 Zinc finger protein 782",
"Tax_Id=9606 Gene_Symbol=ZNF787 Zinc finger protein 787",
"Tax_Id=9606 Gene_Symbol=ZNF800 Zinc finger protein 800",
"Tax_Id=9606 Gene_Symbol=ZNF827 21 kDa protein", "Tax_Id=9606 Gene_Symbol=ZNF828 Zinc finger protein 828",
"Tax_Id=9606 Gene_Symbol=ZNF837 Zinc finger protein 837",
"Tax_Id=9606 Gene_Symbol=ZNF878 Zinc finger protein 878",
"Tax_Id=9606 Gene_Symbol=ZNF891 Zinc finger protein 891",
"Tax_Id=9606 Gene_Symbol=ZNHIT2 Zinc finger HIT domain-containing protein 2",
"Tax_Id=9606 Gene_Symbol=ZP2 Zona pellucida sperm-binding protein 2",
"Tax_Id=9606 Gene_Symbol=ZRANB2 Isoform 1 of Zinc finger Ran-binding domain-containing protein 2",
"Tax_Id=9606 Gene_Symbol=ZSWIM6 Zinc finger SWIM domain-containing protein 6",
"Tax_Id=9606 Gene_Symbol=ZUFSP 32 kDa protein", "Tax_Id=9606 Gene_Symbol=ZW10 Centromere/kinetochore protein zw10 homolog",
"Tax_Id=9606 Gene_Symbol=ZWINT ZW10 interactor", "Tax_Id=9606 Gene_Symbol=ZYG11B Isoform 1 of Protein zyg-11 homolog B",
"Tax_Id=9606 Gene_Symbol=ZYX cDNA FLJ53160, highly similar to Zyxin",
"Tax_Id=9606 Gene_Symbol=ZYX Uncharacterized protein", "Tax_Id=9606 Gene_Symbol=ZYX Zyxin"
), class = "factor")), .Names = c("proteinIdentifier", "protein",
"spectra", "unique_peptides", "FDR", "local_FDR", "sequence_coverage",
"expression_value", "expression_percentile", "organism", "tissue",
"localization", "condition", "experiment", "annotation"), class = "data.frame", row.names = c(NA,
-4802L))
it is much longer in the console
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
从你的问题中找出问题的核心并不容易。
要使用一些公共字段(或多个字段)合并数据框,您可以使用 merge() 函数,例如:
如果您想选择行或列,您可以这样做:
等等...
这对你有帮助吗?
It is not easy to find the core of the problem in your question.
For merging data frames using some common field (or fields) you can use the merge() function, like:
If you want to select rows or columns, you can do it like this:
etc...
Does this help you?