Scala 矩阵求逆

发布于 2024-11-08 20:51:02 字数 3447 浏览 0 评论 0原文

呃,是的,我真的需要一个没有创作者眼睛的人的快速输入。根据我的 scalacheck 测试,这里有些问题......但我对此了解不够,不知道问题出在哪里。

case class Matrix(_1: (Float, Float, Float, Float), _2: (Float, Float, Float, Float),
                  _3: (Float, Float, Float, Float), _4: (Float, Float, Float, Float)) extends Immutable {
  def invert = {
    val _11 = _2._2 * _3._3 * _4._4 - _2._2 * _3._4 * _4._3 - _3._2 * _2._3 * _4._4
      +_3._2 * _2._4 * _4._3 + _4._2 * _2._3 * _3._4 - _4._2 * _2._4 * _3._3
    val _21 = -_2._1 * _3._3 * _4._4 + _2._1 * _3._4 * _4._3 + _3._1 * _2._3 * _4._4
      -_3._1 * _2._4 * _4._3 - _4._1 * _2._3 * _3._4 + _4._1 * _2._4 * _3._3
    val _31 = _2._1 * _3._2 * _4._4 - _2._1 * _3._4 * _4._2 - _3._1 * _2._2 * _4._4
      +_3._1 * _2._4 * _4._2 + _4._1 * _2._2 * _3._4 - _4._1 * _2._4 * _3._2
    val _41 = -_2._1 * _3._2 * _4._3 + _2._1 * _3._3 * _4._2 + _3._1 * _2._2 * _4._3
      -_3._1 * _2._3 * _4._2 - _4._1 * _2._2 * _3._3 + _4._1 * _2._3 * _3._2
    val _12 = -_1._2 * _3._3 * _4._4 + _1._2 * _3._4 * _4._3 + _3._2 * _1._3 * _4._4
      -_3._2 * _1._4 * _4._3 - _4._2 * _1._3 * _3._4 + _4._2 * _1._4 * _3._3
    val _22 = _1._1 * _3._3 * _4._4 - _1._1 * _3._4 * _4._3 - _3._1 * _1._3 * _4._4
      +_3._1 * _1._4 * _4._3 + _4._1 * _1._3 * _3._4 - _4._1 * _1._4 * _3._3
    val _32 = -_1._1 * _3._2 * _4._4 + _1._1 * _3._4 * _4._2 + _3._1 * _1._2 * _4._4
      -_3._1 * _1._4 * _4._2 - _4._1 * _1._2 * _3._4 + _4._1 * _1._4 * _3._2
    val _42 = _1._1 * _3._2 * _4._3 - _1._1 * _3._3 * _4._2 - _3._1 * _1._2 * _4._3
      +_3._1 * _1._3 * _4._2 + _4._1 * _1._2 * _3._3 - _4._1 * _1._3 * _3._2
    val _13 = _1._2 * _2._3 * _4._4 - _1._2 * _2._4 * _4._3 - _2._2 * _1._3 * _4._4
      +_2._2 * _1._4 * _4._3 + _4._2 * _1._3 * _2._4 - _4._2 * _1._4 * _2._3
    val _23 = -_1._1 * _2._3 * _4._4 + _1._1 * _2._4 * _4._3 + _2._1 * _1._3 * _4._4
      -_2._1 * _1._4 * _4._3 - _4._1 * _1._3 * _2._4 + _4._1 * _1._4 * _2._3
    val _33 = _1._1 * _2._2 * _4._4 - _1._1 * _2._4 * _4._2 - _2._1 * _1._2 * _4._4
      +_2._1 * _1._4 * _4._2 + _4._1 * _1._2 * _2._4 - _4._1 * _1._4 * _2._2
    val _43 = -_1._1 * _2._2 * _4._3 + _1._1 * _2._3 * _4._2 + _2._1 * _1._2 * _4._3
      -_2._1 * _1._3 * _4._2 - _4._1 * _1._2 * _2._3 + _4._1 * _1._3 * _2._2
    val _14 = -_1._2 * _2._3 * _3._4 + _1._2 * _2._4 * _3._3 + _2._2 * _1._3 * _3._4
      -_2._2 * _1._4 * _3._3 - _3._2 * _1._3 * _2._4 + _3._2 * _1._4 * _2._3
    val _24 = _1._1 * _2._3 * _3._4 - _1._1 * _2._4 * _3._3 - _2._1 * _1._3 * _3._4
      +_2._1 * _1._4 * _3._3 + _3._1 * _1._3 * _2._4 - _3._1 * _1._4 * _2._3
    val _34 = -_1._1 * _2._2 * _3._4 + _1._1 * _2._4 * _3._2 + _2._1 * _1._2 * _3._4
      -_2._1 * _1._4 * _3._2 - _3._1 * _1._2 * _2._4 + _3._1 * _1._4 * _2._2
    val _44 = _1._1 * _2._2 * _3._3 - _1._1 * _2._3 * _3._2 - _2._1 * _1._2 * _3._3
      +_2._1 * _1._3 * _3._2 + _3._1 * _1._2 * _2._3 - _3._1 * _1._3 * _2._2

    val det = _1._1 * _11 + _1._2 * _21 + _1._3 * _31 + _1._4 * _41
    if (det == 0) this
    else Matrix(
      (_11, _12, _13, _14),
      (_21, _22, _23, _24),
      (_31, _32, _33, _34),
      (_41, _42, _43, _44)
    ) * (1 / det)
  }

  def *(f: Float) = Matrix(
    (_1._1 * f, _1._2 * f, _1._3 * f, _1._4 * f),
    (_2._1 * f, _2._2 * f, _2._3 * f, _2._4 * f),
    (_3._1 * f, _3._2 * f, _3._3 * f, _3._4 * f),
    (_4._1 * f, _4._2 * f, _4._3 * f, _4._4 * f)
  )
}

另外,我可以将此矩阵加载到 OpenGL 中还是必须先转置它。我真的总是对这个数学感到困惑。

Uh, yeah, I'd really need a quick input from someone without creator's eyes. Something's wrong in here, according to my scalacheck tests... but I don't really know enough about it to know where it's wrong.

case class Matrix(_1: (Float, Float, Float, Float), _2: (Float, Float, Float, Float),
                  _3: (Float, Float, Float, Float), _4: (Float, Float, Float, Float)) extends Immutable {
  def invert = {
    val _11 = _2._2 * _3._3 * _4._4 - _2._2 * _3._4 * _4._3 - _3._2 * _2._3 * _4._4
      +_3._2 * _2._4 * _4._3 + _4._2 * _2._3 * _3._4 - _4._2 * _2._4 * _3._3
    val _21 = -_2._1 * _3._3 * _4._4 + _2._1 * _3._4 * _4._3 + _3._1 * _2._3 * _4._4
      -_3._1 * _2._4 * _4._3 - _4._1 * _2._3 * _3._4 + _4._1 * _2._4 * _3._3
    val _31 = _2._1 * _3._2 * _4._4 - _2._1 * _3._4 * _4._2 - _3._1 * _2._2 * _4._4
      +_3._1 * _2._4 * _4._2 + _4._1 * _2._2 * _3._4 - _4._1 * _2._4 * _3._2
    val _41 = -_2._1 * _3._2 * _4._3 + _2._1 * _3._3 * _4._2 + _3._1 * _2._2 * _4._3
      -_3._1 * _2._3 * _4._2 - _4._1 * _2._2 * _3._3 + _4._1 * _2._3 * _3._2
    val _12 = -_1._2 * _3._3 * _4._4 + _1._2 * _3._4 * _4._3 + _3._2 * _1._3 * _4._4
      -_3._2 * _1._4 * _4._3 - _4._2 * _1._3 * _3._4 + _4._2 * _1._4 * _3._3
    val _22 = _1._1 * _3._3 * _4._4 - _1._1 * _3._4 * _4._3 - _3._1 * _1._3 * _4._4
      +_3._1 * _1._4 * _4._3 + _4._1 * _1._3 * _3._4 - _4._1 * _1._4 * _3._3
    val _32 = -_1._1 * _3._2 * _4._4 + _1._1 * _3._4 * _4._2 + _3._1 * _1._2 * _4._4
      -_3._1 * _1._4 * _4._2 - _4._1 * _1._2 * _3._4 + _4._1 * _1._4 * _3._2
    val _42 = _1._1 * _3._2 * _4._3 - _1._1 * _3._3 * _4._2 - _3._1 * _1._2 * _4._3
      +_3._1 * _1._3 * _4._2 + _4._1 * _1._2 * _3._3 - _4._1 * _1._3 * _3._2
    val _13 = _1._2 * _2._3 * _4._4 - _1._2 * _2._4 * _4._3 - _2._2 * _1._3 * _4._4
      +_2._2 * _1._4 * _4._3 + _4._2 * _1._3 * _2._4 - _4._2 * _1._4 * _2._3
    val _23 = -_1._1 * _2._3 * _4._4 + _1._1 * _2._4 * _4._3 + _2._1 * _1._3 * _4._4
      -_2._1 * _1._4 * _4._3 - _4._1 * _1._3 * _2._4 + _4._1 * _1._4 * _2._3
    val _33 = _1._1 * _2._2 * _4._4 - _1._1 * _2._4 * _4._2 - _2._1 * _1._2 * _4._4
      +_2._1 * _1._4 * _4._2 + _4._1 * _1._2 * _2._4 - _4._1 * _1._4 * _2._2
    val _43 = -_1._1 * _2._2 * _4._3 + _1._1 * _2._3 * _4._2 + _2._1 * _1._2 * _4._3
      -_2._1 * _1._3 * _4._2 - _4._1 * _1._2 * _2._3 + _4._1 * _1._3 * _2._2
    val _14 = -_1._2 * _2._3 * _3._4 + _1._2 * _2._4 * _3._3 + _2._2 * _1._3 * _3._4
      -_2._2 * _1._4 * _3._3 - _3._2 * _1._3 * _2._4 + _3._2 * _1._4 * _2._3
    val _24 = _1._1 * _2._3 * _3._4 - _1._1 * _2._4 * _3._3 - _2._1 * _1._3 * _3._4
      +_2._1 * _1._4 * _3._3 + _3._1 * _1._3 * _2._4 - _3._1 * _1._4 * _2._3
    val _34 = -_1._1 * _2._2 * _3._4 + _1._1 * _2._4 * _3._2 + _2._1 * _1._2 * _3._4
      -_2._1 * _1._4 * _3._2 - _3._1 * _1._2 * _2._4 + _3._1 * _1._4 * _2._2
    val _44 = _1._1 * _2._2 * _3._3 - _1._1 * _2._3 * _3._2 - _2._1 * _1._2 * _3._3
      +_2._1 * _1._3 * _3._2 + _3._1 * _1._2 * _2._3 - _3._1 * _1._3 * _2._2

    val det = _1._1 * _11 + _1._2 * _21 + _1._3 * _31 + _1._4 * _41
    if (det == 0) this
    else Matrix(
      (_11, _12, _13, _14),
      (_21, _22, _23, _24),
      (_31, _32, _33, _34),
      (_41, _42, _43, _44)
    ) * (1 / det)
  }

  def *(f: Float) = Matrix(
    (_1._1 * f, _1._2 * f, _1._3 * f, _1._4 * f),
    (_2._1 * f, _2._2 * f, _2._3 * f, _2._4 * f),
    (_3._1 * f, _3._2 * f, _3._3 * f, _3._4 * f),
    (_4._1 * f, _4._2 * f, _4._3 * f, _4._4 * f)
  )
}

Also, can I load this Matrix into OpenGL or do I have to transpose it first. I really always get confused about this maths.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

浮光之海 2024-11-15 20:51:02

对矩阵求逆通常是一个坏主意,因为计算可能是病态的。

如果您想求解方程组,最好使用 LU 分解和前后向替换等方法来求解,特别是如果您可以重复使用分解来求解多个右侧向量。

此链接显示了使用旋转进行高斯消除的 Java 示例。

这里还有另一个想法:也许你可以只使用 Java 库,比如 Apache Commons Math(JAMA 的后继者),你的申请?

如果您有特定的情况,我建议将其输入到 Wolfram Alpha 中在开始编码之前您可以看到答案应该是什么。

Inverting a matrix is usually a bad idea, because the calculations can be ill-conditioned.

If you want to solve a system of equations it's a better idea to do it using something like LU decomposition and forward-backward substitution, especially if you can reuse the decomposition to solve for several right hand side vectors.

This link shows a Java example for Gaussian elimination with pivoting.

Here's another thought: maybe you can just use Java libraries like Apache Commons Math, the successor to JAMA, in your application?

If you have a particular case in mind, I'd recommend entering it into Wolfram Alpha so you can see what the answer should be before you start coding.

放我走吧 2024-11-15 20:51:02

我非常确定 Simplex3D 实现了此计算(并且很可能在那里正确完成)。

I'm pretty sure Simplex3D implements this calculation (and very likely it's done correctly there).

尹雨沫 2024-11-15 20:51:02

如果您想玩数字游戏 - 无论如何,请自己动手 - Jesper 和 duffymo 提供了一些很好的建议(求逆矩阵在实践中没有用 - 请研究 LU 分解)。

但是,如果您只是想完成任务TM,请查看ScalalaScalalab

无论哪种方式,您都需要线性代数背景知识 - 这对于许多领域来说都是非常有用的数学。

If you want to play with numerics - by all means go ahead and do it yourself - you have some good suggestions from Jesper and duffymo (inverting matrices is not useful in practice - look into LU decomposition).

If however if you just want to Get Stuff DoneTM look into Scalala and Scalalab.

Either way you will need Linear Algebra background knowledge - which is incredibly useful math for lots of fields.

梦在深巷 2024-11-15 20:51:02

请参阅 Wikipedia 上的可逆矩阵:解析解。顶部的全部计算计算矩阵的辅助,其中行列式是计算,逆矩阵就是 1 / det 乘以辅助矩阵。

在此处输入图像描述

整个计算是针对代码中的 4 x 4 矩阵显式写出的,因此如果存在错误需要花费一些精力来检查整个事情。维基百科文章解释了它应该如何工作。

Look at Invertible matrix: Analytic solution on Wikipedia. The whole bunch of calculations at the top compute the adjugate of the matrix, from which the determinant is calculated, and the inverse is then 1 / det times the adjugate matrix.

enter image description here

The whole calculation is written out explicitly for a 4 x 4 matrix in your code, so if there's a bug in it will take some effort to check the whole thing. The Wikipedia articles explain how it's supposed to work.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文