将大矩形划分为小矩形(2D 打包)

发布于 2024-11-08 19:55:33 字数 888 浏览 4 评论 0原文

我需要将大的静态大小的矩形分割成小矩形的算法。对我来说,一个完美的实现如下所示:

struct RECT
{
  int l,t,r,b;
};

class BigRect
{
public:
  // width and height of big rect
  BigRect( unsigned width, unsigned height );

  // returns -1 if rect cannot be allocated, otherwise returns id of found rect
  int GetRect( unsigned width, unsigned height, RECT &out );

  // returns allocated rect to big rectangle
  void FreeRect( int id );
};

void test()
{
  BigRect r( 10, 10 );

  RECT out;
  r.GetRect( 4, 4, out ); // rect found ({0,0,4,4} for example), returns 1
  r.GetRect( 5, 5, out ); // rect found ({4,0,9,5} for example), returns 2

  r.GetRect( 6, 6, out ); // no place found for rect, returns -1
  r.FreeRect( 2 );        // add {4,0,9,5} back to rect

  r.GetRect( 6, 6, out ); // rect found (4,0,10,6)
}

所以我需要 GetRectFreeRect 方法的算法。任何想法和链接将不胜感激。

I need algorithm which splits big static sized rectangle to small ones. A perfect implementation for me look like this:

struct RECT
{
  int l,t,r,b;
};

class BigRect
{
public:
  // width and height of big rect
  BigRect( unsigned width, unsigned height );

  // returns -1 if rect cannot be allocated, otherwise returns id of found rect
  int GetRect( unsigned width, unsigned height, RECT &out );

  // returns allocated rect to big rectangle
  void FreeRect( int id );
};

void test()
{
  BigRect r( 10, 10 );

  RECT out;
  r.GetRect( 4, 4, out ); // rect found ({0,0,4,4} for example), returns 1
  r.GetRect( 5, 5, out ); // rect found ({4,0,9,5} for example), returns 2

  r.GetRect( 6, 6, out ); // no place found for rect, returns -1
  r.FreeRect( 2 );        // add {4,0,9,5} back to rect

  r.GetRect( 6, 6, out ); // rect found (4,0,10,6)
}

So I need algorithm for GetRect and FreeRect methods. Any ideas and links would be appreciated.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

肩上的翅膀 2024-11-15 19:55:34

您想要做的是在线二维装箱。它是在线的,因为在您尝试将它们打包成大图片之前,您手中并没有所有的小图片。此外,一些小图片将被“释放”,它们的空间将被释放。另一方面,离线算法允许您在打包之前对小图片进行从大到小的排序。

这里有一篇文章调查了 2D 封装的最新技术:二维包装综述。这是相当理论化的。

本文二维在线装箱的新上限引用了其他文章描述在线 2D 打包算法。

游戏界的人也有和你类似的问题;他们称之为纹理打包纹理图集。然而,他们使用离线算法。

John Ratcliff 发布了一篇博客文章关于纹理包装。

另请参阅 gamedev 上的相关问题: https://gamedev.stackexchange.com/questions/2829/texture-打包算法

What you're trying to do is online 2D bin packing. It's online because you don't have all your small pictures in hand before you attempt to pack them into the big picture. Furthermore some small pictures will be "deallocated" and their space will be freed up. On the other hand, an offline algorithm allows you to do things like sort your small pictures from largest to smallest before packing them.

Here's an article that surveys the state of the art in 2D packing: Survey on two-dimensional packing. It's quite theoretical.

This article A New Upper Bound on 2D Online Bin Packing cites other articles that describe online 2D packing algorithms.

People in the gaming world have a similar problem as you do; they call it texture packing or texture atlas. However, they use offline algorithms.

John Ratcliff posted a blog article on texture packing.

See also this related question on gamedev: https://gamedev.stackexchange.com/questions/2829/texture-packing-algorithm

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文