高斯消除变换和征服算法的替代方案

发布于 2024-11-08 19:39:17 字数 62 浏览 0 评论 0原文

变换与征服中的高斯消除算法的复杂度为 O(n3)。是否有任何技术可以提高该算法的复杂性?

Gaussian elimination algorithm in transform and conquer has O(n3) complexity. Is there any technique that give more efficient complexity of this algorithm?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

独行侠 2024-11-15 19:39:17

有一些渐近复杂度更好的矩阵求逆算法,例如复杂度为 O(n2.807) 的 Strassen 算法和 Coppersmith–Winograd 算法,复杂度为 O(n2.376)。

(请注意,矩阵乘法和矩阵求逆的复杂度相同

There are algorithms for matrix inversion with better asymptotic complexity, e.g., the Strassen algorithm with complexity O(n2.807) and the Coppersmith–Winograd algorithm with complexity O(n2.376).

(Note that the complexity of matrix multiplication and matrix inversion are the same)

新雨望断虹 2024-11-15 19:39:17

这取决于您测量的复杂性:

乘法次数:不,通过改变技术,您只能使高斯消除的复杂性恶化。

时间步数:是的,行操作的并行实现将时间复杂度降低到 O(n)。

It depends on which complexity you measure:

Number of multiplications: No, by changing the technique you can only worsen the complexity of Gaussian elimination.

Number of time steps: Yes, parallel implementation of the row operations reduces time complexity to O(n).

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文