主成分分析的工作示例?

发布于 2024-11-08 16:59:42 字数 1536 浏览 7 评论 0原文

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

海风掠过北极光 2024-11-15 16:59:42

如果您了解 Python,这里有一个简短的实践示例:

# Generate correlated data from uncorrelated data.
# Each column of X is a 3-dimensional feature vector.
Z = scipy.randn(3, 1000)
C = scipy.randn(3, 3)
X = scipy.dot(C, Z)

# Visualize the correlation among the features.
pylab.scatter(X[0,:], X[1,:])
pylab.scatter(X[0,:], X[2,:])
pylab.scatter(X[1,:], X[2,:])

# Perform PCA. It can be shown that the principal components of the 
# matrix X are equivalent to the left singular vectors of X, which are
# equivalent to the eigenvectors of X X^T (up to indeterminacy in sign).
U, S, Vh = scipy.linalg.svd(X)
W, Q = scipy.linalg.eig(scipy.dot(X, X.T))
print U
print Q

# Project the original features onto the eigenspace.
Y = scipy.dot(U.T, X)

# Visualize the absence of correlation among the projected features.
pylab.scatter(Y[0,:], Y[1,:])
pylab.scatter(Y[1,:], Y[2,:])
pylab.scatter(Y[0,:], Y[2,:])

If you know Python, here is a short hands-on example:

# Generate correlated data from uncorrelated data.
# Each column of X is a 3-dimensional feature vector.
Z = scipy.randn(3, 1000)
C = scipy.randn(3, 3)
X = scipy.dot(C, Z)

# Visualize the correlation among the features.
pylab.scatter(X[0,:], X[1,:])
pylab.scatter(X[0,:], X[2,:])
pylab.scatter(X[1,:], X[2,:])

# Perform PCA. It can be shown that the principal components of the 
# matrix X are equivalent to the left singular vectors of X, which are
# equivalent to the eigenvectors of X X^T (up to indeterminacy in sign).
U, S, Vh = scipy.linalg.svd(X)
W, Q = scipy.linalg.eig(scipy.dot(X, X.T))
print U
print Q

# Project the original features onto the eigenspace.
Y = scipy.dot(U.T, X)

# Visualize the absence of correlation among the projected features.
pylab.scatter(Y[0,:], Y[1,:])
pylab.scatter(Y[1,:], Y[2,:])
pylab.scatter(Y[0,:], Y[2,:])
不爱素颜 2024-11-15 16:59:42

您可以检查 http://alias-i.com/lingpipe/ demos/tutorial/svd/read-me.html SVD 和 LSA 与 PCA 非常相似,都是空间缩减方法。唯一的区别在于基础评估方法。

You can check http://alias-i.com/lingpipe/demos/tutorial/svd/read-me.html SVD and LSA is very similar approach to PCA both are space reduction methods. The only difference in basis evaluation approach.

冬天旳寂寞 2024-11-15 16:59:42

由于您要求提供可用的实践示例,此处您有一个可以玩的交互式演示。

Since you're asking for available hands-on examples, here you have an interactive demo to play with.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文