OpenCV cvFindContours - 如何分离轮廓的组成部分

发布于 2024-11-08 04:44:43 字数 512 浏览 4 评论 0原文

我一直在使用 OpenCV,经过大量的试验和错误,我成功地学会了如何检测照片中的圆圈(硬币)。一切都很好,除了当我将硬币直接放在彼此旁边时(如下所示,忽略第二张图像是颠倒的事实)。

原始照片 Contours Found

​​ 似乎是因为硬币距离太近,cvFindContours 认为它​​们是同一个对象。我的问题是如何将这些轮廓分离成单独的对象,或者获取已分离的轮廓的列表。

我用于 cvFindContours 的参数是:

cvFindContours( img, storage, &contour, sizeof(CvContour), CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0, 0) );

任何帮助或建议将不胜感激。

I've been playing around with OpenCV and with alot of trial and error have managed to learn how to detect circles (coins) in a photo. Everything is working great, except when I place coins directly next to each other (as seen below, ignore the fact that the 2nd image is upside down).

Original Photo
Contours Found

It seems because the coins are so close together cvFindContours think they are the same object. My question is how can I separate these contours into their separate objects, or get a list of contours that are already separated.

The parameters I used for cvFindContours are:

cvFindContours( img, storage, &contour, sizeof(CvContour), CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0, 0) );

Any help or advice would be greatly appreciated.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

黑寡妇 2024-11-15 04:44:43

这不是很好,但它显示了如何到达那里:

IplImage* src = cvLoadImage(argv[1], CV_LOAD_IMAGE_UNCHANGED);
IplImage* gray = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1); 
cvCvtColor(src, gray, CV_BGR2GRAY);
cvSmooth(gray, gray, CV_GAUSSIAN, 7, 7); 

IplImage* cc_img = cvCreateImage(cvGetSize(gray), gray->depth, 3); 
cvSetZero(cc_img);
CvScalar(ext_color);

cvCanny(gray, gray, 10, 30, 3); 

CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* circles = cvHoughCircles(gray, storage, CV_HOUGH_GRADIENT, 1, src->height/6, 100, 50);
cvCvtColor(gray, src, CV_GRAY2BGR);
for (size_t i = 0; i < circles->total; i++)
{   
     // round the floats to an int
     float* p = (float*)cvGetSeqElem(circles, i); 
     cv::Point center(cvRound(p[0]), cvRound(p[1]));
     int radius = cvRound(p[2]);

     // draw the circle center
     //cvCircle(cc_img, center, 3, CV_RGB(0,255,0), -1, 8, 0 );

     // draw the circle outline
     cvCircle(cc_img, center, radius+1, CV_RGB(0,0,255), 2, 8, 0 );

     //printf("x: %d y: %d r: %d\n", center.x, center.y, radius);
}   

CvMemStorage *mem;
mem = cvCreateMemStorage(0);
CvSeq *contours = 0;
cvCvtColor(cc_img, gray, CV_BGR2GRAY);
// Use either this:
int n = cvFindContours(gray, mem, &contours, sizeof(CvContour), CV_RETR_CCOMP, CV_CHAIN_APPROX_NONE, cvPoint(0,0));
// Or this:
//int n = cvFindContours(gray, mem, &contours, sizeof(CvContour), CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0));

for (; contours != 0; contours = contours->h_next)
{
    ext_color = CV_RGB( rand()&255, rand()&255, rand()&255 ); //randomly coloring different contours
    cvDrawContours(cc_img, contours, ext_color, CV_RGB(0,0,0), -1, CV_FILLED, 8, cvPoint(0,0));
}

cvSaveImage("out.png", cc_img);

在此处输入图像描述

This is not great, but it shows how to get there:

IplImage* src = cvLoadImage(argv[1], CV_LOAD_IMAGE_UNCHANGED);
IplImage* gray = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1); 
cvCvtColor(src, gray, CV_BGR2GRAY);
cvSmooth(gray, gray, CV_GAUSSIAN, 7, 7); 

IplImage* cc_img = cvCreateImage(cvGetSize(gray), gray->depth, 3); 
cvSetZero(cc_img);
CvScalar(ext_color);

cvCanny(gray, gray, 10, 30, 3); 

CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* circles = cvHoughCircles(gray, storage, CV_HOUGH_GRADIENT, 1, src->height/6, 100, 50);
cvCvtColor(gray, src, CV_GRAY2BGR);
for (size_t i = 0; i < circles->total; i++)
{   
     // round the floats to an int
     float* p = (float*)cvGetSeqElem(circles, i); 
     cv::Point center(cvRound(p[0]), cvRound(p[1]));
     int radius = cvRound(p[2]);

     // draw the circle center
     //cvCircle(cc_img, center, 3, CV_RGB(0,255,0), -1, 8, 0 );

     // draw the circle outline
     cvCircle(cc_img, center, radius+1, CV_RGB(0,0,255), 2, 8, 0 );

     //printf("x: %d y: %d r: %d\n", center.x, center.y, radius);
}   

CvMemStorage *mem;
mem = cvCreateMemStorage(0);
CvSeq *contours = 0;
cvCvtColor(cc_img, gray, CV_BGR2GRAY);
// Use either this:
int n = cvFindContours(gray, mem, &contours, sizeof(CvContour), CV_RETR_CCOMP, CV_CHAIN_APPROX_NONE, cvPoint(0,0));
// Or this:
//int n = cvFindContours(gray, mem, &contours, sizeof(CvContour), CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0));

for (; contours != 0; contours = contours->h_next)
{
    ext_color = CV_RGB( rand()&255, rand()&255, rand()&255 ); //randomly coloring different contours
    cvDrawContours(cc_img, contours, ext_color, CV_RGB(0,0,0), -1, CV_FILLED, 8, cvPoint(0,0));
}

cvSaveImage("out.png", cc_img);

enter image description here

把时间冻结 2024-11-15 04:44:43

您可以尝试对图像进行阈值处理(cvThreshold),然后腐蚀( <一href="http://opencv.willowgarage.com/documentation/image_filtering.html?highlight=erode#cvErode" rel="nofollow">cvErode) 生成的二进制图像来分离硬币。然后找到腐蚀图像的轮廓。

You could try thresholding (cvThreshold) the image and then erode (cvErode) the resulting binary image to separate the coins. Then find the contours of the eroded image.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文