随机数范围的不同概率
我正在寻找实现随机数生成器的最佳方法,这将使我能够控制返回生成的数字范围的概率。为了形象化我想要实现的目标,我有一张图片:
所以总结一下: 假设我的范围是 400。一开始我希望有 5% 的概率获得数字 0-20。但在某个时刻我希望这个概率增加到 50%。希望你能明白。
I'm looking for the best way of implementing random number generator, that will allow me to have control over probability from what range the generated number will be returned. To visualize what I'm trying to achieve I have a picture :
So to summarize :
Let's say that my range is 400. At the beginning I'd like to have 5% probability of getting number 0-20. But at some moment in time I'd like to have this probability increased up to 50%. Hope you get the idea.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
嗯,在您的原始工作中,我有一个非常简单的算法来以适当的比例生成数组中的范围,然后随机选择一个范围并生成该范围内的随机数。毫无疑问,如有必要,它可以进行优化,但它对我有用。
看起来代码很多,但其中有3/4是注释、测试数据和函数,实际的randomRange函数只有17行代码。
Hmm, working on your original I had a pretty simple algorithm to generate ranges in an array in the appropriate proportion, then randomly select a range and generate a random number within that range. No doubt it can be optimised if necessary, but it works for me.
It looks like a lot of code, but 3/4 of it is comments, test data and function, the actual randomRange function is only 17 lines of code.
在我看来,您正在寻找的是一种生成正态(或高斯)分布数字的方法(看看 维基百科页面(如果您不知道这意味着什么)。
Box-Muller 变换 可用于生成正态分布数字对。
这是 Box-Muller 变换的极坐标形式的 C++ 实现,应该不难翻译成 JavaScript。
其中mean是正态分布的均值,stddev是分布的标准差。此代码来自我最近使用的 MersesenneTwister C++ 类,您可以在 上找到该类里克·瓦格纳的页面。您可以在此页面上找到有关 Box-Muller 变换的更多有用信息。
It sounds to me like what you're looking for is a way to generate numbers on a normal (or Gaussian) distribution (take a look at the Wikipedia page if you don't know what that means).
The Box-Muller transformation can be used to generate pairs of normally distributed numbers.
Here is a c++ implementation of the polar form of the Box-Muller transformation that shouldn't be hard to translate to javascript.
Where mean is the mean of the normal distribution and stddev is the Standard Deviation of the distribution. This code is from a MersesenneTwister C++ class that I've been using recently that you can find on Rick Wagner's page. You can find some more useful information about the Box-Muller transformation on this page.