如何在转置数据数组上使用 fftw_plan_many_dft?

发布于 2024-11-07 17:57:40 字数 2191 浏览 2 评论 0原文

我有一个以列主(Fortran 样式)格式存储的二维数据数组,我想对每行进行 FFT。我想避免转置数组(它不是方形的)。例如,我的数组

fftw_complex* data = new fftw_complex[21*256];

包含条目 [r0_val0, r1_val0,..., r20_val0, r0_val1,...,r20_val255]

我可以使用 fftw_plan_many_dft 制定计划,以解决 data 数组中 21 个 FFT 中的每一个(如果它是-major),例如 [r0_val0, r0_val1,..., r0_val255, r1_val0,...,r20_val255]

int main() {
  int N = 256;
  int howmany = 21;
  fftw_complex* data = new fftw_complex[N*howmany];
  fftw_plan p;

  // this plan is OK
  p = fftw_plan_many_dft(1,&N,howmany,data,NULL,1,N,data,NULL,1,N,FFTW_FORWARD,FFTW_MEASURE);
  // do stuff...

  return 0;
}

根据文档 (FFTW 手册第 4.4.1 节),该函数的签名是

fftw_plan fftw_plan_many_dft(int rank, const int *n, int howmany,
                              fftw_complex *in, const int *inembed,
                              int istride, int idist,
                              fftw_complex *out, const int *onembed,
                              int ostride, int odist,
                              int sign, unsigned flags);

,我应该能够使用 stridedist 参数来设置索引。据我从文档中可以理解,要转换的数组中的条目索引为 in + j*istride + k*idist 其中 j=0..n-1代码>和k=0..howmany-1。 (我的数组是一维的,有多少)。但是,以下代码会产生一个 seg。错误(编辑:步幅长度错误,请参阅下面的更新):

int main() {
  int N = 256;
  int howmany = 21;
  fftw_complex* data = new fftw_complex[N*howmany];
  fftw_plan p;

  // this call results in a seg. fault.
  p = fftw_plan_many_dft(1,&N,howmany,data,NULL,N,1,data,NULL,N,1,FFTW_FORWARD,FFTW_MEASURE);

  return 0;
}

更新:

我在选择步幅长度时犯了一个错误。正确的调用是(正确的步幅长度是 howmany,而不是 N):

int main() {
  int N = 256;
  int howmany = 21;
  fftw_complex* data = new fftw_complex[N*howmany];
  fftw_plan p;

  // OK
  p = fftw_plan_many_dft(1,&N,howmany,data,NULL,howmany,1,data,NULL,howmany,1,FFTW_FORWARD,FFTW_MEASURE);
  // do stuff  

  return 0;
}

I have a 2D array of data stored in column-major (Fortran-style) format, and I'd like to take the FFT of each row. I would like to avoid transposing the array (it is not square). For example, my array

fftw_complex* data = new fftw_complex[21*256];

contains entries [r0_val0, r1_val0,..., r20_val0, r0_val1,...,r20_val255].

I can use fftw_plan_many_dft to make a plan to solve each of the 21 FFTs in-place in the data array if it is row-major, e.g. [r0_val0, r0_val1,..., r0_val255, r1_val0,...,r20_val255]:

int main() {
  int N = 256;
  int howmany = 21;
  fftw_complex* data = new fftw_complex[N*howmany];
  fftw_plan p;

  // this plan is OK
  p = fftw_plan_many_dft(1,&N,howmany,data,NULL,1,N,data,NULL,1,N,FFTW_FORWARD,FFTW_MEASURE);
  // do stuff...

  return 0;
}

According to the documentation (section 4.4.1 of the FFTW manual), the signature for the function is

fftw_plan fftw_plan_many_dft(int rank, const int *n, int howmany,
                              fftw_complex *in, const int *inembed,
                              int istride, int idist,
                              fftw_complex *out, const int *onembed,
                              int ostride, int odist,
                              int sign, unsigned flags);

and I should be able to use the stride and dist parameters to set the indexing. From what I can understand from the documentation, the entries in the array to be transformed are indexed as in + j*istride + k*idist where j=0..n-1 and k=0..howmany-1. (My arrays are 1D and there are howmany of them). However, the following code results in a seg. fault (edit: the stride length is wrong, see update below):

int main() {
  int N = 256;
  int howmany = 21;
  fftw_complex* data = new fftw_complex[N*howmany];
  fftw_plan p;

  // this call results in a seg. fault.
  p = fftw_plan_many_dft(1,&N,howmany,data,NULL,N,1,data,NULL,N,1,FFTW_FORWARD,FFTW_MEASURE);

  return 0;
}

Update:

I made an error choosing the stride length. The correct call is (the correct stride length is howmany, not N):

int main() {
  int N = 256;
  int howmany = 21;
  fftw_complex* data = new fftw_complex[N*howmany];
  fftw_plan p;

  // OK
  p = fftw_plan_many_dft(1,&N,howmany,data,NULL,howmany,1,data,NULL,howmany,1,FFTW_FORWARD,FFTW_MEASURE);
  // do stuff  

  return 0;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

月隐月明月朦胧 2024-11-14 17:57:40

该功能按文档工作。我在步幅长度方面犯了一个错误,在本例中实际上应该是 howmany。我已经更新了问题以反映这一点。

我发现如果没有示例,FFTW 的文档有点难以理解(我可能只是文盲......),因此我在下面发布了一个更详细的示例,将 fftw_plan_dft_1d 的常用用法与 <代码>fftw_plan_many_dft。回顾一下,如果有 howmany 个长度为 N 的数组存储在引用为 in 的连续内存块中,则数组元素 < code>j 对于每个变换 k 都是

*(in + j*istride + k*idist)

以下两段代码是等效的。在第一个中,从某些二维数组的转换是显式完成的,在第二个中,使用 fftw_plan_many_dft 调用就地完成所有操作。

显式复制

int N, howmany;
// ...
fftw_complex* data = (fftw_complex*) fftw_malloc(N*howmany*sizeof(fftw_complex));
// ... load data with howmany arrays of length N 
int istride, idist;
// ... if data is column-major, set istride=howmany, idist=1
//    if data is row-major, set istride=1, idist=N

fftw_complex* in = (fftw_complex*) fftw_malloc(N*sizeof(fftw_complex));
fftw_complex* out = (fftw_complex*) fftw_malloc(N*sizeof(fftw_complex));
fftw_plan p = fftw_plan_dft_1d(N,in,out,FFTW_FORWARD,FFTW_MEASURE);
for (int k = 0; k < howmany; ++k) {
  for (int j = 0; j < N; ++j) {
    in[j] = data[j*istride + k*idist];
  }
  fftw_execute(p);
  // do something with out
}

计划很多

int N, howmany;
// ...
fftw_complex* data = (fftw_complex*) fftw_malloc(N*howmany*sizeof(fftw_complex));
// ... load data with howmany arrays of length N 
int istride, idist;
// ... if data is column-major, set istride=howmany, idist=1
//    if data is row-major, set istride=1, idist=N

fftw_plan p = fftw_plan_many_dft(1,&N,howmany,data,NULL,howmany,1,data,NULL,howmany,1,FFTW_FORWARD,FFTW_MEASURE);
fftw_execute(p);

The function works as documented. I made an error with the stride length, which should actually be howmany in this case. I have updated the question to reflect this.

I find the documentation for FFTW is somewhat difficult to comprehend without examples (I could just be illiterate...), so I'm posting a more detailed example below, comparing the usual use of fftw_plan_dft_1d with fftw_plan_many_dft. To recap, in the case of howmany arrays with length N that are stored in a contiguous block of memory referenced as in, the array elements j for each transform k are

*(in + j*istride + k*idist)

The following two pieces of code are equivalent. In the first, the conversion from some 2D array is done explicitly, and in the second the fftw_plan_many_dft call is used to do everything in-place.

Explicit Copy

int N, howmany;
// ...
fftw_complex* data = (fftw_complex*) fftw_malloc(N*howmany*sizeof(fftw_complex));
// ... load data with howmany arrays of length N 
int istride, idist;
// ... if data is column-major, set istride=howmany, idist=1
//    if data is row-major, set istride=1, idist=N

fftw_complex* in = (fftw_complex*) fftw_malloc(N*sizeof(fftw_complex));
fftw_complex* out = (fftw_complex*) fftw_malloc(N*sizeof(fftw_complex));
fftw_plan p = fftw_plan_dft_1d(N,in,out,FFTW_FORWARD,FFTW_MEASURE);
for (int k = 0; k < howmany; ++k) {
  for (int j = 0; j < N; ++j) {
    in[j] = data[j*istride + k*idist];
  }
  fftw_execute(p);
  // do something with out
}

Plan Many

int N, howmany;
// ...
fftw_complex* data = (fftw_complex*) fftw_malloc(N*howmany*sizeof(fftw_complex));
// ... load data with howmany arrays of length N 
int istride, idist;
// ... if data is column-major, set istride=howmany, idist=1
//    if data is row-major, set istride=1, idist=N

fftw_plan p = fftw_plan_many_dft(1,&N,howmany,data,NULL,howmany,1,data,NULL,howmany,1,FFTW_FORWARD,FFTW_MEASURE);
fftw_execute(p);
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文