OpenCV - 图像拼接

发布于 2024-11-07 12:20:00 字数 2670 浏览 4 评论 0原文

我正在使用以下代码来拼接输入图像。对于一个未知的 原因是输出结果是垃圾! 看来单应矩阵是错误的(或者受到错误影响) 因为变换后的图像就像一颗“被剥削的明星”! 我已经评论了我猜是问题根源的部分 但我无法意识到这一点。 任何帮助或观点都是appriced!

祝你今天过得愉快, 阿里

void Stitch2Image(IplImage *mImage1, IplImage *mImage2) 
{ 

    // Convert input images to gray 
    IplImage* gray1 = cvCreateImage(cvSize(mImage1->width, mImage1->height), 8, 1); 

    cvCvtColor(mImage1, gray1, CV_BGR2GRAY); 
    IplImage* gray2 = cvCreateImage(cvSize(mImage2->width, mImage2->height), 8, 1); 

    cvCvtColor(mImage2, gray2, CV_BGR2GRAY); 
    // Convert gray images to Mat 
    Mat img1(gray1); 
    Mat img2(gray2); 
    // Detect FAST keypoints and BRIEF features in the first image 
    FastFeatureDetector detector(50); 
    BriefDescriptorExtractor descriptorExtractor; 
    BruteForceMatcher<L1<uchar> > descriptorMatcher; 
    vector<KeyPoint> keypoints1; 
    detector.detect( img1, keypoints1 ); 
    Mat descriptors1; 
    descriptorExtractor.compute( img1, keypoints1, descriptors1 );

/* Detect FAST keypoints and BRIEF features in the second image*/


    vector<KeyPoint> keypoints2; 
    detector.detect( img1, keypoints2 ); 
    Mat descriptors2; 
    descriptorExtractor.compute( img2, keypoints2, descriptors2 ); 
    vector<DMatch> matches; 
    descriptorMatcher.match(descriptors1, descriptors2, matches); 
    if (matches.size()==0) 
            return; 
    vector<Point2f> points1, points2; 
    for(size_t q = 0; q < matches.size(); q++) 
    { 
            points1.push_back(keypoints1[matches[q].queryIdx].pt); 
            points2.push_back(keypoints2[matches[q].trainIdx].pt); 
    } 
    // Create the result image 
    result = cvCreateImage(cvSize(mImage2->width * 2, mImage2->height), 8, 3); 
    cvZero(result); 

   // Copy the second image in the result image 

    cvSetImageROI(result, cvRect(mImage2->width, 0, mImage2->width, mImage2->height)); 
    cvCopy(mImage2, result); 
    cvResetImageROI(result); 

  // Create warp image 
    IplImage* warpImage = cvCloneImage(result); 
    cvZero(warpImage); 

  /************************** Is there anything wrong here!? *******************/ 
   // Find homography matrix 
    Mat H = findHomography(Mat(points1), Mat(points2), 8, 3.0); 
    CvMat HH = H; // Is this line converted correctly? 
   // Transform warp image 
    cvWarpPerspective(mImage1, warpImage, &HH); 
  // Blend 
    blend(result, warpImage);
  /*******************************************************************************/ 

    cvReleaseImage(&gray1); 
    cvReleaseImage(&gray2); 
    cvReleaseImage(&warpImage); 
}

I am using following code to stitch to input images. For an unknown
reason the output result is crap!
It seems that the homography matrix is wrong (or is affected wrongly)
because the transformed image is like an "exploited star"!
I have commented the part that I guess is the source of the problem
but I cannot realize it.
Any help or point is appriciated!

Have a nice day,
Ali

void Stitch2Image(IplImage *mImage1, IplImage *mImage2) 
{ 

    // Convert input images to gray 
    IplImage* gray1 = cvCreateImage(cvSize(mImage1->width, mImage1->height), 8, 1); 

    cvCvtColor(mImage1, gray1, CV_BGR2GRAY); 
    IplImage* gray2 = cvCreateImage(cvSize(mImage2->width, mImage2->height), 8, 1); 

    cvCvtColor(mImage2, gray2, CV_BGR2GRAY); 
    // Convert gray images to Mat 
    Mat img1(gray1); 
    Mat img2(gray2); 
    // Detect FAST keypoints and BRIEF features in the first image 
    FastFeatureDetector detector(50); 
    BriefDescriptorExtractor descriptorExtractor; 
    BruteForceMatcher<L1<uchar> > descriptorMatcher; 
    vector<KeyPoint> keypoints1; 
    detector.detect( img1, keypoints1 ); 
    Mat descriptors1; 
    descriptorExtractor.compute( img1, keypoints1, descriptors1 );

/* Detect FAST keypoints and BRIEF features in the second image*/


    vector<KeyPoint> keypoints2; 
    detector.detect( img1, keypoints2 ); 
    Mat descriptors2; 
    descriptorExtractor.compute( img2, keypoints2, descriptors2 ); 
    vector<DMatch> matches; 
    descriptorMatcher.match(descriptors1, descriptors2, matches); 
    if (matches.size()==0) 
            return; 
    vector<Point2f> points1, points2; 
    for(size_t q = 0; q < matches.size(); q++) 
    { 
            points1.push_back(keypoints1[matches[q].queryIdx].pt); 
            points2.push_back(keypoints2[matches[q].trainIdx].pt); 
    } 
    // Create the result image 
    result = cvCreateImage(cvSize(mImage2->width * 2, mImage2->height), 8, 3); 
    cvZero(result); 

   // Copy the second image in the result image 

    cvSetImageROI(result, cvRect(mImage2->width, 0, mImage2->width, mImage2->height)); 
    cvCopy(mImage2, result); 
    cvResetImageROI(result); 

  // Create warp image 
    IplImage* warpImage = cvCloneImage(result); 
    cvZero(warpImage); 

  /************************** Is there anything wrong here!? *******************/ 
   // Find homography matrix 
    Mat H = findHomography(Mat(points1), Mat(points2), 8, 3.0); 
    CvMat HH = H; // Is this line converted correctly? 
   // Transform warp image 
    cvWarpPerspective(mImage1, warpImage, &HH); 
  // Blend 
    blend(result, warpImage);
  /*******************************************************************************/ 

    cvReleaseImage(&gray1); 
    cvReleaseImage(&gray2); 
    cvReleaseImage(&warpImage); 
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

相对绾红妆 2024-11-14 12:20:00

我建议您按以下顺序尝试:

1)使用 CV_RANSAC 选项进行单应性。请参阅http://opencv.willowgarage.com/documentation/cpp/calib3d_camera_calibration_and_3d_reconstruction.html

2) 尝试其他描述符,特别是 OpenCV 附带的 SIFT 或 SURF。对于某些图像,FAST 或 Brief 描述符的区分度不够。编辑(2012年8月):基于BRIEF的ORB描述符非常好而且快!

3) 尝试查看单应性矩阵(在调试模式下逐步执行或打印它)并查看其是否一致。

4) 如果上述没有给您任何线索,请尝试查看形成的匹配。是否将一张图像中的一个点与另一张图像中的多个点相匹配?如果是这样,问题又应该出在描述符或检测器上。

我的直觉是这是描述符(所以 1)或 2)应该修复它)。

This is what I would suggest you to try, in this order:

1) Use CV_RANSAC option for homography. Refer http://opencv.willowgarage.com/documentation/cpp/calib3d_camera_calibration_and_3d_reconstruction.html

2) Try other descriptors, particularly SIFT or SURF which ship with OpenCV. For some images FAST or BRIEF descriptors are not discriminating enough. EDIT (Aug '12): The ORB descriptors, which are based on BRIEF, are quite good and fast!

3) Try to look at the Homography matrix (step through in debug mode or print it) and see if it is consistent.

4) If above does not give you a clue, try to look at the matches that are formed. Is it matching one point in one image with a number of points in the other image? If so the problem again should be with the descriptors or the detector.

My hunch is that it is the descriptors (so 1) or 2) should fix it).

我家小可爱 2024-11-14 12:20:00

还可以在 BruteForceMatcher 中切换到汉明距离而不是 L1 距离。应该使用汉明距离来比较简短的描述符。

Also switch to Hamming distance instead of L1 distance in BruteForceMatcher. BRIEF descriptors are supposed to be compared using Hamming distance.

墨离汐 2024-11-14 12:20:00

您的单应性可能是根据错误的匹配计算出来的,因此代表了错误的对齐。
我建议通过额外检查行之间的相互依赖性来确定矩阵的路径。

您可以使用以下代码:

bool cvExtCheckTransformValid(const Mat& T){

    // Check the shape of the matrix
    if (T.empty())
       return false;
    if (T.rows != 3)
       return false;
    if (T.cols != 3)
       return false;

    // Check for linear dependency.
    Mat tmp;
    T.row(0).copyTo(tmp);
    tmp /= T.row(1);
    Scalar mean;
    Scalar stddev;
    meanStdDev(tmp,mean,stddev);
    double X = abs(stddev[0]/mean[0]);
    printf("std of H:%g\n",X);
    if (X < 0.8)
       return false;

    return true;    
}

Your homography, might calculated based on wrong matches and thus represent bad allignment.
I suggest to path the matrix through additional check of interdependancy between its rows.

You can use the following code:

bool cvExtCheckTransformValid(const Mat& T){

    // Check the shape of the matrix
    if (T.empty())
       return false;
    if (T.rows != 3)
       return false;
    if (T.cols != 3)
       return false;

    // Check for linear dependency.
    Mat tmp;
    T.row(0).copyTo(tmp);
    tmp /= T.row(1);
    Scalar mean;
    Scalar stddev;
    meanStdDev(tmp,mean,stddev);
    double X = abs(stddev[0]/mean[0]);
    printf("std of H:%g\n",X);
    if (X < 0.8)
       return false;

    return true;    
}
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文