OpenCV HOG 描述符上的 SVMLight

发布于 2024-11-07 07:24:53 字数 522 浏览 0 评论 0原文

我正在尝试使用 SVM Light 来学习 OpenCV2.2 HOG 描述符的分类器。 我从 HOG 描述符获得浮点向量输出。

阅读 SVMLight 文档后,我仍然无法理解输入训练和测试数据的格式是什么。

网站中的 train.dat 中的一行示例:

1 6:0.0176472501759912 15:0.0151152682071138 26:0.0572866228831546 27:0.0128461400334668

Where,

The first char: 1, denote the positive class.    
The second and third char 6: <== I don't understand what does this means,    
The third variable denote the feature vector.

Will Anybody please help?谢谢!

I am trying to use SVM Light to learn a classifier for the OpenCV2.2 HOG Descriptor.
I get a float vector output from the HOG descriptor.

After reading the SVMLight documentation, i still cannot understand what is the format of the input train and test data.

Example of a line from train.dat from the website:

1 6:0.0176472501759912 15:0.0151152682071138 26:0.0572866228831546 27:0.0128461400334668

Where,

The first char: 1, denote the positive class.    
The second and third char 6: <== I don't understand what does this means,    
The third variable denote the feature vector.

Would anyone please help? Thanks!

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

千仐 2024-11-14 07:24:53

第二个和第三个字符6:<==我不明白这是什么意思,第三个变量表示特征向量。

6:XXXX 表示本示例中第 6 个功能的值为 XXX

在您提供的示例中:

1 6:0.0176472501759912 15:0.0151152682071138 26:0.0572866228831546 27:0.0128461400334668

这意味着该示例的类标签为 1。第 6 个特征值是 0.0176472501759912,第 15 个特征值是 0.0151152682071138,等等。

将其视为每个示例的特征向量的“稀疏编码”。这隐式意味着对于您提供的示例,功能 1-5、7-14、16-25 的值为 0。

The second and third char 6: <== I don't understand what does this means, The third variable denote the feature vector.

The 6:XXXX means that the value of the 6th feature for this example is XXX

In the example you provide:

1 6:0.0176472501759912 15:0.0151152682071138 26:0.0572866228831546 27:0.0128461400334668

It means that the example has a class label of 1. The 6th feature value is 0.0176472501759912, the 15th feature value is 0.0151152682071138, etc.

Think of it as a "sparse encoding" of the feature vector for each example. Implicitly this means that values for features 1-5, 7-14, 16-25 is 0 for the example that you provided.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文