动态寻路算法的方法

发布于 2024-11-07 01:54:13 字数 285 浏览 0 评论 0原文

我的 A* 实现非常适合我的静态环境。 如果我现在想使用动态环境,即当我们从开始到结束遍历时,节点之间的某些成本会发生变化。

从到目前为止的阅读中,我发现了 LPA*、D* 和 D* Lite 算法可以帮助我。好吧,我最坏的情况是全部实施,然后看看哪种效果最好。

是否有任何研究来比较这些算法的功能? 目前我读到的论文都只关注单一算法,而且由于实验环境不同,很难进行比较。

**一些背景信息:我正在使用 C++,我的环境是一个 3D 场景,我的搜索图使用导航网格表示。

My A* implementation works well for my static environment.
If I would now like to work with a dynamic environment, i.e. certain costs between my nodes change while we are traversing from the start to the finish.

From my reading so far I have found the LPA*, D* and D* Lite algorithm that could help me. Well my worst case scenario would be to implement all and see what works best.

Is there any research done on comparing the capabilities of these algorithms?
The papers that I have read so far just focus on a single algorithm at a time and since their experiment environments are different, it is hard to make a comparison.

**Some background information: I'm using C++ and my environment is a 3d scene with my search graph being represented using navmeshes.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

清欢 2024-11-14 01:54:13

也许这篇论文可以帮助你,反应变形路线图:动态环境中多个机器人的运动规划
Russell Gayle Avneesh Sud Ming C. Lin Dinesh Manocha;摘要是这样的:

我们提出了一种新颖的算法
多机器人运动规划
在动态障碍中。我们的
方法基于新的路线图
使用可变形的表示
链接并动态缩回
捕捉免费的连接性
空间。我们使用牛顿物理学
胡克定律更新位置
里程碑并使链接变形
对其他机器人的运动做出反应
和障碍。基于此
路线图表示,我们描述
我们的规划算法可以
计算数十条无碰撞路径
复杂动态中的机器人
环境。

他们提出了一种基于物理的自适应路线图算法
缩回并更改其拓扑的表示形式
动态环境的作用。可以用它
规划单个机器人或多个机器人的运动
动态障碍

Maybe this paper could help you, Reactive Deformation Roadmaps: Motion Planning of Multiple Robots in Dynamic Environments by
Russell Gayle Avneesh Sud Ming C. Lin Dinesh Manocha; The abstract goes like this:

We present a novel algorithm for
motion planning of multiple robots
amongst dynamic obstacles. Our
approach is based on a new roadmap
representation that uses deformable
links and dynamically retracts to
capture the connectivity of the free
space. We use Newtonian Physics and
Hooke’s Law to update the position of
the milestones and deform the links in
response to the motion of other robots
and the obstacles. Based on this
roadmap representation, we describe
our planning algorithms that can
compute collision-free paths for tens
of robots in complex dynamic
environments.

They present an algorithm that is physically-based, adaptive roadmap
representation that retracts and changes its topology as a
function of the dynamic environment. Iit can be used
to plan the motion of a single robot or multiple robots among
dynamic obstacles.

醉态萌生 2024-11-14 01:54:13

自从您提出问题以来已经有一段时间了,所以也许您已经有时间尝试所有这些...但就其价值而言,D*-Lite 论文 (http://www.aaai.org/Papers/AAAI/ 2002/AAAI02-072.pdf)最后有一个部分,实验结果,比较了 LPA*、D* 和 A* 的性能。

It's been some time since you asked, so maybe you've already had time to try them all... But for what it's worth, the D*-Lite paper (http://www.aaai.org/Papers/AAAI/2002/AAAI02-072.pdf) has a section at the end, Experimental results, comparing performance with LPA*, D* and A*.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文