如何在 Python 中将图像分割成多个部分
我正在尝试使用 PIL 将一张照片分成多块。
def crop(Path,input,height,width,i,k,x,y,page):
im = Image.open(input)
imgwidth = im.size[0]
imgheight = im.size[1]
for i in range(0,imgheight-height/2,height-2):
print i
for j in range(0,imgwidth-width/2,width-2):
print j
box = (j, i, j+width, i+height)
a = im.crop(box)
a.save(os.path.join(Path,"PNG","%s" % page,"IMG-%s.png" % k))
k +=1
但它似乎不起作用。它会分割照片,但不是以精确的方式(你可以尝试一下)。
I'm trying to split a photo into multiple pieces using PIL.
def crop(Path,input,height,width,i,k,x,y,page):
im = Image.open(input)
imgwidth = im.size[0]
imgheight = im.size[1]
for i in range(0,imgheight-height/2,height-2):
print i
for j in range(0,imgwidth-width/2,width-2):
print j
box = (j, i, j+width, i+height)
a = im.crop(box)
a.save(os.path.join(Path,"PNG","%s" % page,"IMG-%s.png" % k))
k +=1
but it doesn't seem to be working. It splits the photo but not in an exact way (you can try it).
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(24)
将图像分割为 MxN 像素的图块(假设 im 是 numpy.ndarray):
如果您想将图像分割为四块:
tiles[0] 保存左上角的图块
Splitting image to tiles of MxN pixels (assuming im is numpy.ndarray):
In the case you want to split the image to four pieces:
tiles[0] holds the upper left tile
作为替代解决方案,我们将通过使用 生成坐标网格来构建图块
itertools.product
。我们将忽略边缘上的部分图块,仅迭代两个间隔之间的笛卡尔积,ierange(0, hh%d, d) X range(0, ww%d, d)
。给定
filename
:图像文件名,d
:图块大小,dir_in
:包含图像的目录的路径,以及dir_out
:瓦片输出的目录:As an alternative solution, we will construct the tiles by generating a grid of coordinates using
itertools.product
. We will ignore partial tiles on the edges, only iterating through the cartesian product between the two intervals, i.e.range(0, h-h%d, d) X range(0, w-w%d, d)
.Given
filename
: the image file name,d
: the tile size,dir_in
: the path to the directory containing the image, anddir_out
: the directory where tiles will be outputted:编辑:我相信这个答案错过了将图像切割成列和行中的矩形的意图。这个答案只分成几行。它看起来像其他答案分成列和行。
比所有这些更简单的是使用其他人发明的轮子:) 设置起来可能会更复杂,但使用起来很简单。
这些说明适用于 Windows 7;它们可能需要针对其他操作系统进行调整。
从此处获取并安装 pip。
下载安装存档,并将其解压到 Python 安装根目录。打开控制台并输入(如果我没记错的话):
然后通过 pip 获取并安装 image_slicer 模块,方法是在控制台输入以下命令:
将要切片的图像复制到 Python 根目录中,打开 python shell(不是“命令行”),然后输入以下命令:
该模块的优点在于它
Edit: I believe this answer missed the intent to cut an image into rectangles in columns and rows. This answer cuts only into rows. It looks like other answers cut in columns and rows.
Simpler than all these is to use a wheel someone else invented :) It may be more involved to set up, but then it's a snap to use.
These instructions are for Windows 7; they may need to be adapted for other OSs.
Get and install pip from here.
Download the install archive, and extract it to your root Python installation directory. Open a console and type (if I recall correctly):
Then get and install the image_slicer module via pip, by entering the following command at the console:
Copy the image you want to slice into the Python root directory, open a python shell (not the "command line"), and enter these commands:
The beauty of this module is that it
crop
会更可重用如果你分开函数
裁剪代码
图像保存
代码。它还会拨打电话
签名更简单。
im.crop
返回一个Image._ImageCrop
实例。这样的实例没有保存方法。
相反,您必须粘贴
Image._ImageCrop
实例到new
Image.Image
步长。 (为什么
height-2
而不是高度
?例如。为什么停在imgheight-(高度/2)
?)。所以,你可以尝试这样的事情:
crop
would be a more reusablefunction if you separate the
cropping code from the
image saving
code. It would also make the call
signature simpler.
im.crop
returns aImage._ImageCrop
instance. Suchinstances do not have a save method.
Instead, you must paste the
Image._ImageCrop
instance onto anew
Image.Image
step sizes. (Why
height-2
and notheight
? for example. Why stop atimgheight-(height/2)
?).So, you might try instead something like this:
这是一个适用于 Python 3 的最新答案
用法:
然后图像将根据指定的 X 和 Y 片段裁剪成片段,在我的例子中为 5 x 5 = 25 片段
Here is a late answer that works with Python 3
Usage:
Then the images will be cropped into pieces according to the specified X and Y pieces, in my case 5 x 5 = 25 pieces
这是一个简洁的纯 python 解决方案,适用于 python 3 和 2
:
Here is a concise, pure-python solution that works in both python 3 and 2:
Notes:
我发现 skimage.util.view_as_windows 或 `skimage.util.view_as_blocks 更容易,它还允许您配置步骤
http://scikit-image.org/docs/dev/api/skimage.util.html?highlight= view_as_windows#skimage.util.view_as_windows
I find it easier to
skimage.util.view_as_windows
or `skimage.util.view_as_blocks which also allows you to configure the stephttp://scikit-image.org/docs/dev/api/skimage.util.html?highlight=view_as_windows#skimage.util.view_as_windows
不确定这是否是最有效的答案,但它对我有用:
这主要基于 DataScienceGuy 答案 此处
Not sure if this is the most efficient answer, but it works for me:
This is mostly based on DataScienceGuy answer here
这是另一个解决方案,仅使用 NumPy 内置的 np.array_split :
它返回一个 NumPy 数组,其维度作为 n_blocks 传递。
数组的每个元素都是一个块,因此要访问每个块并将其保存为图像,您应该编写如下内容:
这个答案非常快,比 @Nir 答案更快,@Nir 答案是发布的答案中最干净的。此外,比建议的包(即
image_slicer
)快了几乎三个数量级。希望它仍然有用。
Here is another solution, just using NumPy built-in
np.array_split
:It returns a NumPy array with the dimension passed as n_blocks.
Each element of the array is a block, so to access each block and save it as an image you should write something like the following:
This answer is very fast, faster than @Nir answer, which among the posted ones was the cleanest. Additionally is almost three orders of magnitude faster than the suggested package (i.e.
image_slicer
).Hope it can still be useful.
对于任何寻求简单方法的人来说,这里有一个简单的工作函数,用于将图像分割成 NxN 个部分。
For anyone looking for a simple approach to this, here is a simple working function for splitting an image into NxN sections.
将图像分割成特定大小的正方形
我调整了一个解决方案,使其接受特定的图块大小而不是图块数量,因为我需要将图像切割成 32px 正方形的网格。
参数是
image_path
和图块大小
(以像素为单位)。我试图使代码尽可能具有可读性。
Splitting an image into squares of a specific size
I adapted a solution so that it accepts a specific tile size instead of an amount of tiles because I needed to cut the image up into a grid of 32px squares.
The parameters are the
image_path
and thesize of the tile
s in pixels.I tried to make the code as readable as possible.
感谢 @Ivan 教我一些有关 itertools 和网格的知识。来这里是将断层扫描 3D 图像数据(tif 文件)分割成更小的区域以进行评估。我将脚本改编为 3D-TIF 文件(使用 tiffile 库)并添加了“居中”方法。因此,图块不是从左上角开始,而是居中并在每个方向的边界处裁剪太小的图块。也许这也对其他人有帮助。
Thanks @Ivan for teaching me something about itertools and grids. Came here to split up tomographic 3D image data (tif-files) into smaller regions for evaluation. I adapted the script to 3D-TIF files (using the tiffile library) and added a "centered" approach. So the tiles don't start in the upper-left corner but are centered and crop too small tiles at the borders at each direction. Maybe this also help other people.
这是我的脚本工具,将 css-sprit 图像分割成图标非常简单:
将代码保存到 split_icons.py 中:
This is my script tools, it is very sample to splite css-sprit image into icons:
Save code into split_icons.py :
我尝试了上面的解决方案,但有时你必须自己做。
在某些情况下可能会偏离一个像素,但一般情况下工作正常。
希望有帮助。
I tried the solutions above, but sometimes you just gotta do it yourself.
Might be off by a pixel in some cases but works fine in general.
Hope it helps.
我建议使用多处理而不是常规的 for 循环,如下所示:
I would suggest to use multiprocessing instead of a regular for loop as follows:
最简单的方法:
此命令将图像分割为 16 个切片,并将它们保存在输入图像所在的目录中。
你应该首先安装 image_slicer:
the easiest way:
this command splits the image into 16 slices and saves them in the directory that the input image is there.
you should first install image_slicer:
你可以使用 numpy stride 技巧来实现这一点,但要小心,因为
这个函数必须非常小心地使用
(doc)you can use numpy stride tricks to achive this, but be careful, as
this function has to be used with extreme care
(doc)这是我基于 这里,进行一些小的调整(添加频道),它可能会满足您的需求:
这是结果的示例。图片来自 FUNSD 数据集。
Here's my attempt on a grayscale image with only numpy based on the solution from here, with some minor tweaks (adding channels) it might suit your needs:
Here's an example of the result. Image from FUNSD dataset.
不确定它是否仍然相关,但我的尝试如下:
(我假设图像是一个 numpy 数组。我没有使用 Pil 或任何东西,因为我不想有除了 numpy 之外的任何依赖项。)
作为输入,该函数正在接收一个 numpy 图像和一个整数(您可以也变成元组,但我希望均匀分布的网格单元始终具有相同数量的行和列单元格)。
首先,代码根据给定的
grid_size
计算单元格的宽度和高度。之后,代码迭代所有行和列并生成 x、y 坐标,以及用于定义单元格的 x0 和 y0(y+高度,x+宽度)。每个单元格都以列表的形式保存为
pieces
,然后将其转换为 numpy 数组并返回。Not sure if it's still relevant, but my attempt is following:
(I am assuming the image is a numpy array. I am not using Pil or anything, since i didn't want to have any dependencies other than numpy.)
As input the function is receiving a numpy image and an integer (which you could also turn into tuples, but i wanted to have evenly spaced grid cells always with same amount of cells row and column wise).
At first, the code calculates the width and height of the cells based on the given
grid_size
. After that the code iterates over all rows and columns and generates x, y Coordinates, as well as x0 and y0 (y+height, x+width) for defining the cells.Every cell is saved as a list into
pieces
, which is then transformed into a numpy array and returned.发布另一个解决方案很尴尬,但还没有找到答案:
It's awkward to post another one solution, but have not found an answer for: