310 位十进制数的自动整数因式分解

发布于 2024-11-06 16:54:48 字数 195 浏览 4 评论 0原文

有没有可以将 310 位十进制整数分解为质数的软件?有 msieve,我成功地将其用于 120 位因式分解,但 310 位大于 msieve 允许的最大数字 308 位。

PS:要因式分解的数有2个质因数,p-1、p+1等简单快速的因式分解方法很可能会失败。

更新:似乎只有 GGNFS 可以工作,并且有一些 python 脚本可以自动分解。

Is here some software, which is capable of factoring a 310-digit decimal integer number into primes? There was msieve, which I successfully used for 120-digit factoring, but 310 digit is greater than max allowed number of 308-digit for msieve.

PS: the number to factor have 2 prime factors, and p-1,p+1 and other easy and fast factoring methods are likely to fail.

UPDATE: Seems only GGNFS will work and there are some python scripts to automate factoring.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

酒解孤独 2024-11-13 16:54:48

如果不是半素数,请使用 Lenstra 的 EC 算法。否则使用 Pomerance 的 NFS。对于这两个“盒子”都有很好的介绍。我的赌注是浏览 Lenstra 和 Pomerance 的主页,他们都非常擅长阐述。或者查看 Mark Herkommer 所著的“数论:程序员指南”。这正是您所需要的,仅此而已,而且非常清晰。

编辑:虽然 1000 位模数可能有点牵强,假设您有传统的硬件。

编辑:当然,还有一些额外的链接:http://tinyurl.com/herkAmzon 用于 Herkommer 书。

1987 年 Hendrik Lenstra 主页上关于 EC 因式分解的论文:用椭圆曲线分解整数,安。数学。 126、649-673。

来自广阔的网络:上述内容的非常简单的Python源代码算法(我还没有校对过)

Carl Pomerance 的主页以及关于数域筛的相关论文位于此处

但是,您可能还会发现有关筛子发展的叙述很有用,或关于二次版本的阐述也来自 Pomerance 的页面。

查看这个致力于 GNFS 实现的网站,但我强烈建议您找到一本 Herkommer 书的副本,其中包含明确的内容几页的简单源代码。

编辑:还要考虑跨弹性计算云运行保理。我听说有人按照 这篇 WiRED 文章

Use Lenstra's EC algorithm if it's not a semiprime. Otherwise use Pomerance's NFS. Good introductions exist for both of these "boxes." My bet is to browse the homepages of Lenstra and Pomerance, they're both really good at exposition. Or check out "Number Theory: A Programmers Guide", by Mark Herkommer. It's just what you need, nothing more, and very clear.

EDIT: Although 1000 bit modulus may be a bit of a stretch, assuming you have conventional hardware.

EDIT: Sure, some additional links: http://tinyurl.com/herkAmzon for the Herkommer book.

A 1987 paper on EC factoring from Hendrik Lenstra's homepage : Factoring integers with elliptic curves, Ann. of Math. 126, 649-673..

From the vast net : A very simple Python source code for the above algorithm (which I haven't proofread)

Carl Pomerance's homepage and a relevant paper on the Number Field Sieve is here

However, you may also find useful this narrative on the sieve's development, or this exposition on the quadratic version also from Pomerance's page.

Check out this site dedicated to an implementation of the GNFS, but I strongly recommend finding a copy of the Herkommer book which contains clear simple source code on a few pages.

EDIT : Also consider running the factoring across the Elastic Compute cloud. I hear a guy does it overnight for $75 as per this WiRED article

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文