标记和分析搜索查询
我正在开发一个搜索引擎,其功能考虑了数据的语义,与通常的基于关键字的索引不同。我设法使用元数据提取方法和 RDF 为搜索开发了一个合理的索引,但是我很难在搜索查询本身上使用此类方法,因为搜索查询要短得多表示实际数据。知道如何使用类似的方法、自然语言处理等对搜索查询进行成功的标记吗?
谢谢你!
I'm developing a search engine which functions taking the semantics of data into account, unlike the usual keyword based index. I managed to develop a reasonable index for the search using metadata extraction methods and RDF, but I have difficulty in using such methods on the search query itself since the search query is very much shorter that the actual data. any idea how to perform a successful tagging of a search query, using similar methods, natural language processing, etc. ?
Thank You!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
是的,典型查询的样本量太小,语义分析没有任何价值。
一种方法可能是使用“命名实体”或“主语动词对象”元组等下拉菜单来限制或扩展查询。
另一种方法是使用从元数据创建的规则来扩展简单的关键字,例如,对“汽车”的查询可能会
在提交之前扩展到元组模式。
最后,您可以尝试使用无语义价值的前缀和/或后缀来扩展查询,以使查询大小足够大以触发 OpenCalais 的识别器。
类似于“用户在查询中指定了以下术语:一、二、三。”。
返回结果后,过滤掉仅与添加的前缀/后缀匹配的所有结果。
只是一些简单的想法。
Yes, the sample size of a typical query is too small for semantic analysis to be of any value.
One approach might be to constrain or expand your query using drop-down menus for things like "Named Entities" or "Subject Verb Object" tuples.
Another approach would be to expand simple keywords using rules created from your metadata so that, for example, a query for 'car' might be expanded to the tuple pattern
before submission.
Finally, you might try expanding the query with a non-semantically valuable prefix and/or suffix to get the query size large enough to trigger OpenCalais' recognizer.
Something like 'The user has specified the following terms in her query: one, two, three.'.
And once the results are returned, filter out all results that match only the added prefix/suffix.
Just a few quick thoughts.
您需要构建语义树。它将基于关键字的组合。
例如,汽车-->车辆-->汽车汽车这关系到汽车的技术方面。旅行 -
You need to build semantic tree. It will based on the combination of keywords.
For example, automobile -->vehicle --> car this relation technical aspect of car. travel --