如何在 Weka 中执行引导并删除异常值?
我刚刚开始使用 Weka API 和一些示例数据集,但只是想了解一些细节。有谁知道如何在Weka中执行0.632引导?
另外我该如何检测异常值(我知道有很多不同的方法可以做到这一点......)?
另外,一旦识别出 10% 的异常值,我该如何删除它们?
任何帮助将不胜感激!
干杯,
尼尔
I am just starting to play around with the Weka API and a couple of the example data sets, but just wanted to understand a couple bits and pieces. Does anyone know how to perform 0.632 bootstrapping in Weka?
Also how do would I go about detecting outliers (I understand there are many different methods of doing this...)?
Also how would I remove say 10% of outliers, once they have been identified?
Any help would be greatly appreciated!
Cheers,
Neil
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您可以使用 Resample 执行监督重采样,这就是 bootstrap。过滤器。
You can perform supervised resampling, which is what bootstrap is, using the Resample filter.