求Pi第n位数字的函数

发布于 2024-11-05 12:44:28 字数 201 浏览 4 评论 0原文

我一直想找到一种算法来做到这一点。我不在乎它有多慢,只要它能返回 Pi 的第 n 位即可:

例如:

size_t piAt(long long int n)
{
}

最好不要使用无限级数。

如果有人有一个在 C 或 C++ 中执行此操作的函数或类,我真的很想看看它。

谢谢

I have always wanted to find an algorithm that did this. I do not care how slow it is, just as long as it can return the nth digit of Pi:

ex:

size_t piAt(long long int n)
{
}

Preferably, not using an infinite series.

If anyone has a function or class that does this, in C or C++ I'd really be interested in seeing it.

Thanks

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

烦人精 2024-11-12 12:44:28

这是由 Fabrice Bellard 编写的 Simon Plouffe 的解决方案:

   /*
     * Computation of the n'th decimal digit of \pi with very little memory.
     * Written by Fabrice Bellard on January 8, 1997.
     * 
     * We use a slightly modified version of the method described by Simon
     * Plouffe in "On the Computation of the n'th decimal digit of various
     * transcendental numbers" (November 1996). We have modified the algorithm
     * to get a running time of O(n^2) instead of O(n^3log(n)^3).
     * 
     * This program uses mostly integer arithmetic. It may be slow on some
     * hardwares where integer multiplications and divisons must be done
     * by software. We have supposed that 'int' has a size of 32 bits. If
     * your compiler supports 'long long' integers of 64 bits, you may use
     * the integer version of 'mul_mod' (see HAS_LONG_LONG).  
     */

    #include <stdlib.h>
    #include <stdio.h>
    #include <math.h>

/* uncomment the following line to use 'long long' integers */
/* #define HAS_LONG_LONG */

#ifdef HAS_LONG_LONG
#define mul_mod(a,b,m) (( (long long) (a) * (long long) (b) ) % (m))
#else
#define mul_mod(a,b,m) fmod( (double) a * (double) b, m)
#endif

/* return the inverse of x mod y */
int inv_mod(int x, int y)
{
    int q, u, v, a, c, t;

    u = x;
    v = y;
    c = 1;
    a = 0;
    do {
    q = v / u;

    t = c;
    c = a - q * c;
    a = t;

    t = u;
    u = v - q * u;
    v = t;
    } while (u != 0);
    a = a % y;
    if (a < 0)
    a = y + a;
    return a;
}

/* return (a^b) mod m */
int pow_mod(int a, int b, int m)
{
    int r, aa;

    r = 1;
    aa = a;
    while (1) {
    if (b & 1)
        r = mul_mod(r, aa, m);
    b = b >> 1;
    if (b == 0)
        break;
    aa = mul_mod(aa, aa, m);
    }
    return r;
}

/* return true if n is prime */
int is_prime(int n)
{
    int r, i;
    if ((n % 2) == 0)
    return 0;

    r = (int) (sqrt(n));
    for (i = 3; i <= r; i += 2)
    if ((n % i) == 0)
        return 0;
    return 1;
}

/* return the prime number immediatly after n */
int next_prime(int n)
{
    do {
    n++;
    } while (!is_prime(n));
    return n;
}

int main(int argc, char *argv[])
{
    int av, a, vmax, N, n, num, den, k, kq, kq2, t, v, s, i;
    double sum;

    if (argc < 2 || (n = atoi(argv[1])) <= 0) {
    printf("This program computes the n'th decimal digit of \\pi\n"
           "usage: pi n , where n is the digit you want\n");
    exit(1);
    }

    N = (int) ((n + 20) * log(10) / log(2));

    sum = 0;

    for (a = 3; a <= (2 * N); a = next_prime(a)) {

    vmax = (int) (log(2 * N) / log(a));
    av = 1;
    for (i = 0; i < vmax; i++)
        av = av * a;

    s = 0;
    num = 1;
    den = 1;
    v = 0;
    kq = 1;
    kq2 = 1;

    for (k = 1; k <= N; k++) {

        t = k;
        if (kq >= a) {
        do {
            t = t / a;
            v--;
        } while ((t % a) == 0);
        kq = 0;
        }
        kq++;
        num = mul_mod(num, t, av);

        t = (2 * k - 1);
        if (kq2 >= a) {
        if (kq2 == a) {
            do {
            t = t / a;
            v++;
            } while ((t % a) == 0);
        }
        kq2 -= a;
        }
        den = mul_mod(den, t, av);
        kq2 += 2;

        if (v > 0) {
        t = inv_mod(den, av);
        t = mul_mod(t, num, av);
        t = mul_mod(t, k, av);
        for (i = v; i < vmax; i++)
            t = mul_mod(t, a, av);
        s += t;
        if (s >= av)
            s -= av;
        }

    }

    t = pow_mod(10, n - 1, av);
    s = mul_mod(s, t, av);
    sum = fmod(sum + (double) s / (double) av, 1.0);
    }
    printf("Decimal digits of pi at position %d: %09d\n", n,
       (int) (sum * 1e9));
    return 0;
}

它有效:

C:\tcc>tcc -I libtcc libtcc/libtcc.def -run examples/pi.c 1
Decimal digits of pi at position 1: 141592653

C:\tcc>tcc -I libtcc libtcc/libtcc.def -run examples/pi.c 1000
Decimal digits of pi at position 1000: 938095257

http://bellard.org /pi/pi_n2/pi_n2.html

Here is a solution of Simon Plouffe coded by Fabrice Bellard:

   /*
     * Computation of the n'th decimal digit of \pi with very little memory.
     * Written by Fabrice Bellard on January 8, 1997.
     * 
     * We use a slightly modified version of the method described by Simon
     * Plouffe in "On the Computation of the n'th decimal digit of various
     * transcendental numbers" (November 1996). We have modified the algorithm
     * to get a running time of O(n^2) instead of O(n^3log(n)^3).
     * 
     * This program uses mostly integer arithmetic. It may be slow on some
     * hardwares where integer multiplications and divisons must be done
     * by software. We have supposed that 'int' has a size of 32 bits. If
     * your compiler supports 'long long' integers of 64 bits, you may use
     * the integer version of 'mul_mod' (see HAS_LONG_LONG).  
     */

    #include <stdlib.h>
    #include <stdio.h>
    #include <math.h>

/* uncomment the following line to use 'long long' integers */
/* #define HAS_LONG_LONG */

#ifdef HAS_LONG_LONG
#define mul_mod(a,b,m) (( (long long) (a) * (long long) (b) ) % (m))
#else
#define mul_mod(a,b,m) fmod( (double) a * (double) b, m)
#endif

/* return the inverse of x mod y */
int inv_mod(int x, int y)
{
    int q, u, v, a, c, t;

    u = x;
    v = y;
    c = 1;
    a = 0;
    do {
    q = v / u;

    t = c;
    c = a - q * c;
    a = t;

    t = u;
    u = v - q * u;
    v = t;
    } while (u != 0);
    a = a % y;
    if (a < 0)
    a = y + a;
    return a;
}

/* return (a^b) mod m */
int pow_mod(int a, int b, int m)
{
    int r, aa;

    r = 1;
    aa = a;
    while (1) {
    if (b & 1)
        r = mul_mod(r, aa, m);
    b = b >> 1;
    if (b == 0)
        break;
    aa = mul_mod(aa, aa, m);
    }
    return r;
}

/* return true if n is prime */
int is_prime(int n)
{
    int r, i;
    if ((n % 2) == 0)
    return 0;

    r = (int) (sqrt(n));
    for (i = 3; i <= r; i += 2)
    if ((n % i) == 0)
        return 0;
    return 1;
}

/* return the prime number immediatly after n */
int next_prime(int n)
{
    do {
    n++;
    } while (!is_prime(n));
    return n;
}

int main(int argc, char *argv[])
{
    int av, a, vmax, N, n, num, den, k, kq, kq2, t, v, s, i;
    double sum;

    if (argc < 2 || (n = atoi(argv[1])) <= 0) {
    printf("This program computes the n'th decimal digit of \\pi\n"
           "usage: pi n , where n is the digit you want\n");
    exit(1);
    }

    N = (int) ((n + 20) * log(10) / log(2));

    sum = 0;

    for (a = 3; a <= (2 * N); a = next_prime(a)) {

    vmax = (int) (log(2 * N) / log(a));
    av = 1;
    for (i = 0; i < vmax; i++)
        av = av * a;

    s = 0;
    num = 1;
    den = 1;
    v = 0;
    kq = 1;
    kq2 = 1;

    for (k = 1; k <= N; k++) {

        t = k;
        if (kq >= a) {
        do {
            t = t / a;
            v--;
        } while ((t % a) == 0);
        kq = 0;
        }
        kq++;
        num = mul_mod(num, t, av);

        t = (2 * k - 1);
        if (kq2 >= a) {
        if (kq2 == a) {
            do {
            t = t / a;
            v++;
            } while ((t % a) == 0);
        }
        kq2 -= a;
        }
        den = mul_mod(den, t, av);
        kq2 += 2;

        if (v > 0) {
        t = inv_mod(den, av);
        t = mul_mod(t, num, av);
        t = mul_mod(t, k, av);
        for (i = v; i < vmax; i++)
            t = mul_mod(t, a, av);
        s += t;
        if (s >= av)
            s -= av;
        }

    }

    t = pow_mod(10, n - 1, av);
    s = mul_mod(s, t, av);
    sum = fmod(sum + (double) s / (double) av, 1.0);
    }
    printf("Decimal digits of pi at position %d: %09d\n", n,
       (int) (sum * 1e9));
    return 0;
}

And it works:

C:\tcc>tcc -I libtcc libtcc/libtcc.def -run examples/pi.c 1
Decimal digits of pi at position 1: 141592653

C:\tcc>tcc -I libtcc libtcc/libtcc.def -run examples/pi.c 1000
Decimal digits of pi at position 1000: 938095257

http://bellard.org/pi/pi_n2/pi_n2.html

空袭的梦i 2024-11-12 12:44:28

这个出色的解决方案展示了如何计算 Nth 在 O(N) 时间和 O(log·N) 空间中计算 π 的数字,并且无需计算其之前的所有数字。

哦,它是十六进制的。

如果您不想这样做,您可以从 shell 轻松完成此操作:

% perl -Mbignum=bpi -wle 'print bpi(20)'
3.1415926535897932385

% perl -Mbignum=bpi -wle 'print bpi(50)'
3.1415926535897932384626433832795028841971693993751

% perl -Mbignum=bpi -wle 'print bpi(200)'
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303820

% perl -Mbignum=bpi -wle 'print bpi(1000)'
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420199

This remarkable solution shows how to compute the Nth digit of π in O(N) time and O(log·N) space, and to do so without having to compute all the digits leading up to it.

Oh, and it’s in hex.

If you don’t want to do that, you can do this from the shell easily enough:

% perl -Mbignum=bpi -wle 'print bpi(20)'
3.1415926535897932385

% perl -Mbignum=bpi -wle 'print bpi(50)'
3.1415926535897932384626433832795028841971693993751

% perl -Mbignum=bpi -wle 'print bpi(200)'
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303820

% perl -Mbignum=bpi -wle 'print bpi(1000)'
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420199
少女净妖师 2024-11-12 12:44:28

包括这个在内的几个解决方案实际上打印了从第 n 位数字开始的几个数字。

http:// 有一个很好的(并且比以前的答案快得多)解决方案Numbers.computation.free.fr/Constants/Algorithms/pidec.cpp

代码只需要修改“typedef int64 ModInt;”行到“typedef int64_t ModInt;”

gcc pidec.cpp && time echo 20000 | ./a.out
Pidec, direct computation of decimal digits of pi at a given position n.
(http://numbers.computation.free.fr/Constants/constants.html for more details)
Enter n : Parameters : M=122, N=7094, M*N+M=872562
Series time : 0.17
Digits of pi after n-th decimal digit : 203856539
Total time: 0.68

real    0m0.691s
user    0m0.678s
sys 0m0.006s

Compilation finished at Wed Feb  3 13:34:48

这是在“2015 年初”的 MacBook Pro 上进行的。

Several of the solutions including this one actually print several digits starting with the nth digit.

There is a fine ( and strikingly faster than previous answers) solution at http://numbers.computation.free.fr/Constants/Algorithms/pidec.cpp

The code only needs modification of "typedef int64 ModInt;" line to "typedef int64_t ModInt;"

gcc pidec.cpp && time echo 20000 | ./a.out
Pidec, direct computation of decimal digits of pi at a given position n.
(http://numbers.computation.free.fr/Constants/constants.html for more details)
Enter n : Parameters : M=122, N=7094, M*N+M=872562
Series time : 0.17
Digits of pi after n-th decimal digit : 203856539
Total time: 0.68

real    0m0.691s
user    0m0.678s
sys 0m0.006s

Compilation finished at Wed Feb  3 13:34:48

This on a "early 2015" macbook pro.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文