计算二元词频率

发布于 2024-11-05 10:55:33 字数 2659 浏览 7 评论 0原文

我编写了一段代码,主要用于计算词频并将它们插入到 ARFF 文件中以与 weka 一起使用。我想改变它,以便它可以计算二元词频率,即单词对而不是单个单词,尽管我的尝试最多被证明是不成功的。

我意识到有很多东西需要注意,但非常感谢对此的任何帮助。 这是我的代码:

    import re
    import nltk

    # Quran subset
    filename = raw_input('Enter name of file to convert to ARFF with extension, eg. name.txt: ')

    # create list of lower case words
    word_list = re.split('\s+', file(filename).read().lower())
    print 'Words in text:', len(word_list)
    # punctuation and numbers to be removed
    punctuation = re.compile(r'[-.?!,":;()|0-9]')
    word_list = [punctuation.sub("", word) for word in word_list]

    word_list2 = [w.strip() for w in word_list if w.strip() not in nltk.corpus.stopwords.words('english')]



    # create dictionary of word:frequency pairs
    freq_dic = {}


    for word in word_list2:

        # form dictionary
        try: 
            freq_dic[word] += 1
        except: 
            freq_dic[word] = 1


    print '-'*30

    print "sorted by highest frequency first:"
    # create list of (val, key) tuple pairs
    freq_list2 = [(val, key) for key, val in freq_dic.items()]
    # sort by val or frequency
    freq_list2.sort(reverse=True)
    freq_list3 = list(freq_list2)
    # display result as top 10 most frequent words
    freq_list4 =[]
    freq_list4=freq_list3[:10]

    words = []

    for item in freq_list4:
        a = str(item[1])
        a = a.lower()
        words.append(a)



    f = open(filename)

    newlist = []

    for line in f:
        line = punctuation.sub("", line)
        line = line.lower()
        newlist.append(line)

    f2 = open('Lines.txt','w')

    newlist2= []
    for line in newlist:
        line = line.split()
        newlist2.append(line)
        f2.write(str(line))
        f2.write("\n")


    print newlist2

    # ARFF Creation

    arff = open('output.arff','w')
    arff.write('@RELATION wordfrequency\n\n')
    for word in words:
        arff.write('@ATTRIBUTE ')
        arff.write(str(word))
        arff.write(' numeric\n')

    arff.write('@ATTRIBUTE class {endofworld, notendofworld}\n\n')
    arff.write('@DATA\n')
    # Counting word frequencies for each verse
    for line in newlist2:
        word_occurrences = str("")
        for word in words:
            matches = int(0)
            for item in line:
                if str(item) == str(word):
                matches = matches + int(1)
                else:
                continue
            word_occurrences = word_occurrences + str(matches) + ","
        word_occurrences = word_occurrences + "endofworld"
        arff.write(word_occurrences)
        arff.write("\n")

    print words

I've written a piece of code that essentially counts word frequencies and inserts them into an ARFF file for use with weka. I'd like to alter it so that it can count bi-gram frequencies, i.e. pairs of words instead of single words although my attempts have proved unsuccessful at best.

I realise there's alot to look at but any help on this is greatly appreciated.
Here's my code:

    import re
    import nltk

    # Quran subset
    filename = raw_input('Enter name of file to convert to ARFF with extension, eg. name.txt: ')

    # create list of lower case words
    word_list = re.split('\s+', file(filename).read().lower())
    print 'Words in text:', len(word_list)
    # punctuation and numbers to be removed
    punctuation = re.compile(r'[-.?!,":;()|0-9]')
    word_list = [punctuation.sub("", word) for word in word_list]

    word_list2 = [w.strip() for w in word_list if w.strip() not in nltk.corpus.stopwords.words('english')]



    # create dictionary of word:frequency pairs
    freq_dic = {}


    for word in word_list2:

        # form dictionary
        try: 
            freq_dic[word] += 1
        except: 
            freq_dic[word] = 1


    print '-'*30

    print "sorted by highest frequency first:"
    # create list of (val, key) tuple pairs
    freq_list2 = [(val, key) for key, val in freq_dic.items()]
    # sort by val or frequency
    freq_list2.sort(reverse=True)
    freq_list3 = list(freq_list2)
    # display result as top 10 most frequent words
    freq_list4 =[]
    freq_list4=freq_list3[:10]

    words = []

    for item in freq_list4:
        a = str(item[1])
        a = a.lower()
        words.append(a)



    f = open(filename)

    newlist = []

    for line in f:
        line = punctuation.sub("", line)
        line = line.lower()
        newlist.append(line)

    f2 = open('Lines.txt','w')

    newlist2= []
    for line in newlist:
        line = line.split()
        newlist2.append(line)
        f2.write(str(line))
        f2.write("\n")


    print newlist2

    # ARFF Creation

    arff = open('output.arff','w')
    arff.write('@RELATION wordfrequency\n\n')
    for word in words:
        arff.write('@ATTRIBUTE ')
        arff.write(str(word))
        arff.write(' numeric\n')

    arff.write('@ATTRIBUTE class {endofworld, notendofworld}\n\n')
    arff.write('@DATA\n')
    # Counting word frequencies for each verse
    for line in newlist2:
        word_occurrences = str("")
        for word in words:
            matches = int(0)
            for item in line:
                if str(item) == str(word):
                matches = matches + int(1)
                else:
                continue
            word_occurrences = word_occurrences + str(matches) + ","
        word_occurrences = word_occurrences + "endofworld"
        arff.write(word_occurrences)
        arff.write("\n")

    print words

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

裸钻 2024-11-12 10:55:33

这应该可以帮助您开始:

def bigrams(words):
    wprev = None
    for w in words:
        yield (wprev, w)
        wprev = w

请注意,第一个二元组是 (None, w1) ,其中 w1 是第一个单词,因此您有一个特殊的二元组来标记开始-文本。如果您还需要文本结尾二元组,请在循环后添加 yield (wprev, None)

This should get you started:

def bigrams(words):
    wprev = None
    for w in words:
        yield (wprev, w)
        wprev = w

Note that the first bigram is (None, w1) where w1 is the first word, so you have a special bigram that marks start-of-text. If you also want an end-of-text bigram, add yield (wprev, None) after the loop.

月竹挽风 2024-11-12 10:55:33

推广到具有可选填充的 n-gram,还使用 ​​defaultdict(int) 作为频率,在 2.6 中工作:

from collections import defaultdict

def ngrams(words, n=2, padding=False):
    "Compute n-grams with optional padding"
    pad = [] if not padding else [None]*(n-1)
    grams = pad + words + pad
    return (tuple(grams[i:i+n]) for i in range(0, len(grams) - (n - 1)))

# grab n-grams
words = ['the','cat','sat','on','the','dog','on','the','cat']
for size, padding in ((3, 0), (4, 0), (2, 1)):
    print '\n%d-grams padding=%d' % (size, padding)
    print list(ngrams(words, size, padding))

# show frequency
counts = defaultdict(int)
for ng in ngrams(words, 2, False):
    counts[ng] += 1

print '\nfrequencies of bigrams:'
for c, ng in sorted(((c, ng) for ng, c in counts.iteritems()), reverse=True):
    print c, ng

输出:

3-grams padding=0
[('the', 'cat', 'sat'), ('cat', 'sat', 'on'), ('sat', 'on', 'the'), 
 ('on', 'the', 'dog'), ('the', 'dog', 'on'), ('dog', 'on', 'the'), 
 ('on', 'the', 'cat')]

4-grams padding=0
[('the', 'cat', 'sat', 'on'), ('cat', 'sat', 'on', 'the'), 
 ('sat', 'on', 'the', 'dog'), ('on', 'the', 'dog', 'on'), 
 ('the', 'dog', 'on', 'the'), ('dog', 'on', 'the', 'cat')]

2-grams padding=1
[(None, 'the'), ('the', 'cat'), ('cat', 'sat'), ('sat', 'on'), 
 ('on', 'the'), ('the', 'dog'), ('dog', 'on'), ('on', 'the'), 
 ('the', 'cat'), ('cat', None)]

frequencies of bigrams:
2 ('the', 'cat')
2 ('on', 'the')
1 ('the', 'dog')
1 ('sat', 'on')
1 ('dog', 'on')
1 ('cat', 'sat')

Generalized to n-grams with optional padding, also uses defaultdict(int) for frequencies, to work in 2.6:

from collections import defaultdict

def ngrams(words, n=2, padding=False):
    "Compute n-grams with optional padding"
    pad = [] if not padding else [None]*(n-1)
    grams = pad + words + pad
    return (tuple(grams[i:i+n]) for i in range(0, len(grams) - (n - 1)))

# grab n-grams
words = ['the','cat','sat','on','the','dog','on','the','cat']
for size, padding in ((3, 0), (4, 0), (2, 1)):
    print '\n%d-grams padding=%d' % (size, padding)
    print list(ngrams(words, size, padding))

# show frequency
counts = defaultdict(int)
for ng in ngrams(words, 2, False):
    counts[ng] += 1

print '\nfrequencies of bigrams:'
for c, ng in sorted(((c, ng) for ng, c in counts.iteritems()), reverse=True):
    print c, ng

Output:

3-grams padding=0
[('the', 'cat', 'sat'), ('cat', 'sat', 'on'), ('sat', 'on', 'the'), 
 ('on', 'the', 'dog'), ('the', 'dog', 'on'), ('dog', 'on', 'the'), 
 ('on', 'the', 'cat')]

4-grams padding=0
[('the', 'cat', 'sat', 'on'), ('cat', 'sat', 'on', 'the'), 
 ('sat', 'on', 'the', 'dog'), ('on', 'the', 'dog', 'on'), 
 ('the', 'dog', 'on', 'the'), ('dog', 'on', 'the', 'cat')]

2-grams padding=1
[(None, 'the'), ('the', 'cat'), ('cat', 'sat'), ('sat', 'on'), 
 ('on', 'the'), ('the', 'dog'), ('dog', 'on'), ('on', 'the'), 
 ('the', 'cat'), ('cat', None)]

frequencies of bigrams:
2 ('the', 'cat')
2 ('on', 'the')
1 ('the', 'dog')
1 ('sat', 'on')
1 ('dog', 'on')
1 ('cat', 'sat')
开始看清了 2024-11-12 10:55:33

如果您开始使用 NLTK 的 FreqDist 函数进行计数,生活会变得更加轻松。 NLTK 还具有二元组特征。下页中提供了它们的示例。

http://nltk.googlecode.com/svn/trunk/doc/book /ch01.html

Life is much more easier if you start using NLTK's FreqDist function to do the counting. Also NLTK has bigram feature. Examples for both of them are in the following page.

http://nltk.googlecode.com/svn/trunk/doc/book/ch01.html

别靠近我心 2024-11-12 10:55:33

我已经为你重写了第一部分,因为它很恶心。注意事项:

  1. 列表推导式是你的朋友,多使用它们。
  2. collections.Counter 太棒了!

好的,代码:

import re
import nltk
import collections

# Quran subset
filename = raw_input('Enter name of file to convert to ARFF with extension, eg. name.txt: ')

# punctuation and numbers to be removed
punctuation = re.compile(r'[-.?!,":;()|0-9]')

# create list of lower case words
word_list = re.split('\s+', open(filename).read().lower())
print 'Words in text:', len(word_list)

words = (punctuation.sub("", word).strip() for word in word_list)
words = (word for word in words if word not in ntlk.corpus.stopwords.words('english'))

# create dictionary of word:frequency pairs
frequencies = collections.Counter(words)

print '-'*30

print "sorted by highest frequency first:"
# create list of (val, key) tuple pairs
print frequencies

# display result as top 10 most frequent words
print frequencies.most_common(10)

[word for word, frequency in frequencies.most_common(10)]

I've rewritten the first bit for you, because it's icky. Points to note:

  1. List comprehensions are your friend, use more of them.
  2. collections.Counter is great!

OK, code:

import re
import nltk
import collections

# Quran subset
filename = raw_input('Enter name of file to convert to ARFF with extension, eg. name.txt: ')

# punctuation and numbers to be removed
punctuation = re.compile(r'[-.?!,":;()|0-9]')

# create list of lower case words
word_list = re.split('\s+', open(filename).read().lower())
print 'Words in text:', len(word_list)

words = (punctuation.sub("", word).strip() for word in word_list)
words = (word for word in words if word not in ntlk.corpus.stopwords.words('english'))

# create dictionary of word:frequency pairs
frequencies = collections.Counter(words)

print '-'*30

print "sorted by highest frequency first:"
# create list of (val, key) tuple pairs
print frequencies

# display result as top 10 most frequent words
print frequencies.most_common(10)

[word for word, frequency in frequencies.most_common(10)]
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文