在 C++ 中使用 FFTW 求解一维热方程

发布于 2024-11-05 07:09:56 字数 4501 浏览 8 评论 0原文

我最近刚刚在学校再次学习编程,我的代码遇到了一个涉及快速傅里叶变换包 FFTW 的问题。

在我的代码中,我从一个初始函数开始(在本例中 u(x,t=0) = sin(x) + sin(3*x) 并将使用 RK4 尝试求解热方程的 U_t。对于任何人谁有 FFTW 包的经验,我发送一个大小为 N 的数组并对其进行转换,取两个导数,然后进行逆变换来求解热方程的 U_xx

#include <iostream>
#include <cmath>
#include <fstream>
#include <fftw3.h>

using namespace std;
const double Pi= 3.141592653589;
const int N = 2048;


void Derivative(double& num1, double& num2, int J){
    //takes two derivatives
    num1 = (-1)*J*J*num1;
    num2 = (-1)*J*J*num2;
}

double Function(double X){ // Initial function
    double value = sin(X) + sin(3*X);
    return value;
}

void FFT(double *in, double *Result){

    double *input, *outI;
    input = new double [N];
    outI = new double [N];
    for(int i=0; i<N; i++){
        input[i] = in[i];
    }

    //Declaring transformed matricies;
    fftw_complex *out;
    out= (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*((N/2)+1));

    //Plans for execution
    fftw_plan p;

    p= fftw_plan_dft_r2c_1d(N,input, out, FFTW_ESTIMATE);

    fftw_execute(p);

    //Derivative
    for(int i=0; i<(N/2+1);i++){
        Derivative(out[i][0],out[i][1],i);
    }

    fftw_plan pI;
    //Execution of Inverse FFT

    pI = fftw_plan_dft_c2r_1d(N,out,outI,FFTW_PRESERVE_INPUT);

    fftw_execute(pI);

    for(int i=0;i<N; i++){//Dividing by the size of the array
        Result[i] = (1.0/N)*outI[i];
    }

    fftw_free(outI); fftw_free(out);
    fftw_free(input);
    fftw_destroy_plan(pI);  fftw_destroy_plan(p);
}

int main()
{
    //Creating and delcaring function variables
    double *initial,*w1,*w2,*w3,*w4,*y,*holder1,*holder2, *holder3;
    double dx= 2*Pi/N, x=0, t=0; 
    double h = pow(dx,2), tmax= 100*h;

    //creating arrays for the RK4 procedure
    initial = new double [N];
    w1 = new double [N]; w2 = new double [N]; y= new double [N];
    w3 = new double [N]; w4 = new double [N]; holder1 = new double [N];
    holder2 = new double [N]; holder3 = new double [N];
    double *resultArray=new double[N];
    int j =0;

    //Output files
    ofstream sendtofileINITIAL("HeatdataINITIAL.dat");
    ofstream sendtofile5("Heatdata5.dat");
    ofstream sendtofile25("Heatdata25.dat");
    ofstream sendtofile85("Heatdata85.dat");
    ofstream sendtofileFINAL("HeatdataFINAL.dat");

    //Initial data
    for(int i=0; i<N; i++){
        y[i] = Function(x);  
        sendtofileINITIAL << i*2*Pi/N <<" "<< y[i] << endl;
        x+=dx;
    }

    //RK4
    // y[i+1] = y[i] + (h/2)*(w1 + 2*w2 + 2*w3 + w4)
    // where the w1,w2,w3,w4 is the standard RK4 calculations
    // w1= f(y[i]), w2= f(y[i]+(h/2)*w1[i])
    // w3= f(y[i] + (h/2)*w2[i]) and w4 = f(y[i]+h*w3[i])
    while(t<=tmax){

        FFT(y,resultArray);
        for(int i=0; i<N;i++){    //Calculating w1
            w1[i] = resultArray[i];
        }

        for(int i=0; i<N; i++){
          holder1[i] = y[i] + (h/2)*w1[i];} 

        FFT(holder1,resultArray);

        for(int i=0; i<N; i++){   //Calculating w2
            w2[i] = resultArray[i];
        }

        for(int i=0; i<N; i++){
            holder2[i] = y[i] + (h/2)*w2[i];
        }

        FFT(holder2,resultArray);

        for(int i=0; i<N; i++){   //Calculating w3
            w3[i] = resultArray[i]; 
        }

        for(int i=0; i<N; i++){
            holder3[i]= y[i] + h*w3[i];
        }

        FFT(holder3,resultArray); 

        for(int i=0; i<N; i++){   //Calculating w4
            w4[i] = resultArray[i];
        }

        for(int i=0; i<N; i++){
            y[i] += (h/6.0)*(w1[i] + 2*w2[i] + 2*w3[i] +w4[i]);


            //Outputing data at certain time periods
            if(j==5)
                sendtofile5 << i*2*Pi/N <<" "<< y[i] << endl;

            if(j==25)
                sendtofile25 << i*2*Pi/N <<" "<< y[i] << endl;

            if(j==85)
                sendtofile85 << i*2*Pi/N <<" "<< y[i] << endl;

            if(j==100)
                sendtofileFINAL << i*2*Pi/N <<" "<< y[i] << endl; 
        }
        j++;// counter
        t+=h;// time counter
    }
    sendtofileINITIAL.close();
    sendtofile5.close();
    sendtofile25.close();
    sendtofile85.close();
    sendtofileFINAL.close();
    return 0;
}

当我绘制 y[i 的图时 。 ] 在 t 的几次迭代之后,值会迅速爆炸并在正负之间交替

如果有人对可能导致这些奇怪结果的语法问题有任何建议,或者如果在我的数学方法中发现错误,我将不胜感激。谢谢。

I recently just picked up programming again for school and I am running across an issue with my code that involves the Fast Fourier Transform package FFTW.

In my code, I start with an initial function (in this case u(x,t=0) = sin(x) + sin(3*x) and will use RK4 to attempt to solve U_t of the heat equation. For anyone who has experience with the FFTW package, I am sending in an array of size N and transforming it, taking two derivatives, and then taking an inverse transform to solve for the U_xx of the heat equation.

#include <iostream>
#include <cmath>
#include <fstream>
#include <fftw3.h>

using namespace std;
const double Pi= 3.141592653589;
const int N = 2048;


void Derivative(double& num1, double& num2, int J){
    //takes two derivatives
    num1 = (-1)*J*J*num1;
    num2 = (-1)*J*J*num2;
}

double Function(double X){ // Initial function
    double value = sin(X) + sin(3*X);
    return value;
}

void FFT(double *in, double *Result){

    double *input, *outI;
    input = new double [N];
    outI = new double [N];
    for(int i=0; i<N; i++){
        input[i] = in[i];
    }

    //Declaring transformed matricies;
    fftw_complex *out;
    out= (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*((N/2)+1));

    //Plans for execution
    fftw_plan p;

    p= fftw_plan_dft_r2c_1d(N,input, out, FFTW_ESTIMATE);

    fftw_execute(p);

    //Derivative
    for(int i=0; i<(N/2+1);i++){
        Derivative(out[i][0],out[i][1],i);
    }

    fftw_plan pI;
    //Execution of Inverse FFT

    pI = fftw_plan_dft_c2r_1d(N,out,outI,FFTW_PRESERVE_INPUT);

    fftw_execute(pI);

    for(int i=0;i<N; i++){//Dividing by the size of the array
        Result[i] = (1.0/N)*outI[i];
    }

    fftw_free(outI); fftw_free(out);
    fftw_free(input);
    fftw_destroy_plan(pI);  fftw_destroy_plan(p);
}

int main()
{
    //Creating and delcaring function variables
    double *initial,*w1,*w2,*w3,*w4,*y,*holder1,*holder2, *holder3;
    double dx= 2*Pi/N, x=0, t=0; 
    double h = pow(dx,2), tmax= 100*h;

    //creating arrays for the RK4 procedure
    initial = new double [N];
    w1 = new double [N]; w2 = new double [N]; y= new double [N];
    w3 = new double [N]; w4 = new double [N]; holder1 = new double [N];
    holder2 = new double [N]; holder3 = new double [N];
    double *resultArray=new double[N];
    int j =0;

    //Output files
    ofstream sendtofileINITIAL("HeatdataINITIAL.dat");
    ofstream sendtofile5("Heatdata5.dat");
    ofstream sendtofile25("Heatdata25.dat");
    ofstream sendtofile85("Heatdata85.dat");
    ofstream sendtofileFINAL("HeatdataFINAL.dat");

    //Initial data
    for(int i=0; i<N; i++){
        y[i] = Function(x);  
        sendtofileINITIAL << i*2*Pi/N <<" "<< y[i] << endl;
        x+=dx;
    }

    //RK4
    // y[i+1] = y[i] + (h/2)*(w1 + 2*w2 + 2*w3 + w4)
    // where the w1,w2,w3,w4 is the standard RK4 calculations
    // w1= f(y[i]), w2= f(y[i]+(h/2)*w1[i])
    // w3= f(y[i] + (h/2)*w2[i]) and w4 = f(y[i]+h*w3[i])
    while(t<=tmax){

        FFT(y,resultArray);
        for(int i=0; i<N;i++){    //Calculating w1
            w1[i] = resultArray[i];
        }

        for(int i=0; i<N; i++){
          holder1[i] = y[i] + (h/2)*w1[i];} 

        FFT(holder1,resultArray);

        for(int i=0; i<N; i++){   //Calculating w2
            w2[i] = resultArray[i];
        }

        for(int i=0; i<N; i++){
            holder2[i] = y[i] + (h/2)*w2[i];
        }

        FFT(holder2,resultArray);

        for(int i=0; i<N; i++){   //Calculating w3
            w3[i] = resultArray[i]; 
        }

        for(int i=0; i<N; i++){
            holder3[i]= y[i] + h*w3[i];
        }

        FFT(holder3,resultArray); 

        for(int i=0; i<N; i++){   //Calculating w4
            w4[i] = resultArray[i];
        }

        for(int i=0; i<N; i++){
            y[i] += (h/6.0)*(w1[i] + 2*w2[i] + 2*w3[i] +w4[i]);


            //Outputing data at certain time periods
            if(j==5)
                sendtofile5 << i*2*Pi/N <<" "<< y[i] << endl;

            if(j==25)
                sendtofile25 << i*2*Pi/N <<" "<< y[i] << endl;

            if(j==85)
                sendtofile85 << i*2*Pi/N <<" "<< y[i] << endl;

            if(j==100)
                sendtofileFINAL << i*2*Pi/N <<" "<< y[i] << endl; 
        }
        j++;// counter
        t+=h;// time counter
    }
    sendtofileINITIAL.close();
    sendtofile5.close();
    sendtofile25.close();
    sendtofile85.close();
    sendtofileFINAL.close();
    return 0;
}

When I plot the graph of y[i] after a few iterations of t, the values explode quite rapidly and alternate between positive and negative.

If anyone has any suggestions on syntax problems that may be causing these weird results, or if find errors in my mathematical methods, I would greatly appreciate any information. Thank you.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

独闯女儿国 2024-11-12 07:09:56

你知道如何在不使用 FFT 的情况下求解这个偏微分方程吗?我建议你这样做。在开始之前了解一些答案会很有帮助。

您说这是热/扩散方程,并且给出了初始温度分布,但您没有提到边界条件是什么。既然您什么也没说,那么假设两个端点都是绝缘的(U_x = 0,x = 0,x = L)是否正确?或者它们的价值最终是固定的?如果您知道这些是什么,将会有所帮助 - 没有适当的边界条件就没有解决方案。

Do you know how to solve this PDE without using FFT? I would advise that you do so. It helps to know something about the answer before you start.

You said it was the heat/diffusion equation, and you gave an initial temperature distribution, but you said nothing about what the boundary conditions are. Since you said nothing, is it correct to assume that both end points are insulated (U_x = 0 at x = 0, x = L)? Or are they fixed in value at the ends? It will help if you know what those are - no solution without proper boundary conditions.

ゝ杯具 2024-11-12 07:09:56

这是我在这里的第一个答案,所以请避免任何愚蠢的错误。这个问题大约 7 年前就被问到了,但我在这段代码中发现了问题。希望这会对某人有所帮助。

  1. 稳定性标准不被认为是结果,数值解没有像 #duffymo 提到的那样收敛。因此,我添加了域的长度以标准化网格大小,并根据稳定性标准减少了空间中的点数。

  2. 傅立叶空间中的频率未正确定义。我在代码中添加了这部分,现在该代码可以正常工作。

我将修改后的代码附加到此评论中。

#include <iostream>
#include <cmath>
#include <fstream>
#include <fftw3.h>

using namespace std;
const double Pi = 3.141592653589;
const int N = 64;
const double L = 5.0;

void Derivative(double& num1, double& num2, double J) {
    //takes two derivatives
    num1 = -1 * pow(J, 2)*num1;
    num2 = -1 * pow(J, 2)*num2;
}

double Function(double X) { // Initial function
    double value = 1.0 / cosh(3 * (X - M_PI));//sin(X) + sin(3*X);
    return value;
}

void FFT(double *in, double *Result) {

    double *input, *outI, *kx;
    input = new double[N];
    outI = new double[N];
    kx = new double[N];

    for (int i = 0; i<N; i++) {
        input[i] = in[i];
    }

    //Declaring transformed matricies;
    fftw_complex *out;
    out = (fftw_complex*)fftw_malloc(sizeof(fftw_complex)*(N));

    //Plans for execution
    fftw_plan p;

    p = fftw_plan_dft_r2c_1d(N, input, out, FFTW_ESTIMATE);

    fftw_execute(p);

    //----This part calculate frequencies--------//
    //Frequencies 
    for (int i = 0; i< N / 2; ++i) {
        kx[i] = i / L;
    }

    kx[N / 2] = 0.00;

    for (int i = 0; i < ((N / 2) - 1); ++i) {
        kx[i + 1 + N / 2] = -kx[N / 2 - i - 1];
    }

    //Derivative
    for (int i = 0; i<N; i++) {
        //the frequencies is passed to this function to calculate
        //the derivatives
        Derivative(out[i][0], out[i][1], kx[i]);
    }

    fftw_plan pI;
    //Execution of Inverse FFT

    pI = fftw_plan_dft_c2r_1d(N, out, outI, FFTW_PRESERVE_INPUT);

    fftw_execute(pI);

    for (int i = 0; i<N; i++) {//Dividing by the size of the array
        Result[i] = (1.0 / N)*outI[i];
    }

    fftw_free(outI); fftw_free(out);
    fftw_free(input);
    fftw_destroy_plan(pI);  fftw_destroy_plan(p);
}

int main()
{
    //Creating and delcaring function variables
    double *initial, *w1, *w2, *w3, *w4, *y, *holder1, *holder2, *holder3;
    double dx = 2 * Pi / N, x = 0, t = 0, dt = 0.01;
    double h = pow(dx, 2), tmax = 100 * h;

    //creating arrays for the RK4 procedure
    initial = new double[N];
    w1 = new double[N]; w2 = new double[N]; y = new double[N];
    w3 = new double[N]; w4 = new double[N]; holder1 = new double[N];
    holder2 = new double[N]; holder3 = new double[N];
    double *resultArray = new double[N];
    double *resultnext = new double[N];
    int j = 1;

    // The stability parameter are declared but not used
    float alpha = 0.1, CFL = alpha * dt / (10 * pow(dx, 2));

    //Output files
    ofstream sendtofileINITIAL("HeatdataINITIAL.dat");
    ofstream sendtofile5("Heatdata5.dat");
    ofstream sendtofile25("Heatdata25.dat");
    ofstream sendtofile85("Heatdata85.dat");
    ofstream sendtofileFINAL("HeatdataFINAL.dat");

    //Initial data
    for (int i = 0; i < N; i++) {
        y[i] = Function(x);
        sendtofileINITIAL << i * 2 * Pi / N << " " << y[i] << endl;
        x += dx;
    }

    //RK4
    // y[i+1] = y[i] + (h/2)*(w1 + 2*w2 + 2*w3 + w4)
    // where the w1,w2,w3,w4 is the standard RK4 calculations
    // w1= f(y[i]), w2= f(y[i]+(h/2)*w1[i])
    // w3= f(y[i] + (h/2)*w2[i]) and w4 = f(y[i]+h*w3[i])
    while (t <= tmax) {

        FFT(y, resultArray);

        for (int i = 0; i < N; i++) {    //Calculating w1
            w1[i] = resultArray[i];
        }

        for (int i = 0; i < N; i++) {
            holder1[i] = y[i] + (h / 2)*w1[i];
        }

        FFT(holder1, resultArray);

        for (int i = 0; i < N; i++) {   //Calculating w2
            w2[i] = resultArray[i];
        }

        for (int i = 0; i < N; i++) {
            holder2[i] = y[i] + (h / 2)*w2[i];
        }

        FFT(holder2, resultArray);

        for (int i = 0; i < N; i++) {   //Calculating w3
            w3[i] = resultArray[i];
        }

        for (int i = 0; i < N; i++) {
            holder3[i] = y[i] + h * w3[i];
        }

        FFT(holder3, resultArray);

        for (int i = 0; i < N; i++) {   //Calculating w4
            w4[i] = resultArray[i];
        }

        for (int i = 0; i < N; i++) {
            y[i] += (h / 6.0)*(w1[i] + 2 * w2[i] + 2 * w3[i] + w4[i]);

            //Outputing data at certain time periods
            if (j == 5)
                sendtofile5 << i * 2 * Pi / N << " " << y[i] << endl;

            if (j == 25)
                sendtofile25 << i * 2 * Pi / N << " " << y[i] << endl;

            if (j == 85)
                sendtofile85 << i * 2 * Pi / N << " " << y[i] << endl;

            if (j == 100)
                sendtofileFINAL << i * 2 * Pi / N << " " << y[i] << endl;
        }
        j++;// counter
        t += h;// time counter
    }
    sendtofileINITIAL.close();
    sendtofile5.close();
    sendtofile25.close();
    sendtofile85.close();
    sendtofileFINAL.close();
    return 0;
}

This is my first answer here so please avoid any silly mistakes. This question is asked almost 7 years ago but I found the problem in this code. Hope this will help someone.

  1. Stability criteria is not considered resulting, the numerical solution isn't converging as mentioned by #duffymo. So I have added the length of the domain for normalizing the grid size and reduced the number of points in space as per the stability criteria.

  2. Frequencies in Fourier-space is not defined properly. I added this part in the code and now this code is working properly.

I am attaching the modified code with this comment.

#include <iostream>
#include <cmath>
#include <fstream>
#include <fftw3.h>

using namespace std;
const double Pi = 3.141592653589;
const int N = 64;
const double L = 5.0;

void Derivative(double& num1, double& num2, double J) {
    //takes two derivatives
    num1 = -1 * pow(J, 2)*num1;
    num2 = -1 * pow(J, 2)*num2;
}

double Function(double X) { // Initial function
    double value = 1.0 / cosh(3 * (X - M_PI));//sin(X) + sin(3*X);
    return value;
}

void FFT(double *in, double *Result) {

    double *input, *outI, *kx;
    input = new double[N];
    outI = new double[N];
    kx = new double[N];

    for (int i = 0; i<N; i++) {
        input[i] = in[i];
    }

    //Declaring transformed matricies;
    fftw_complex *out;
    out = (fftw_complex*)fftw_malloc(sizeof(fftw_complex)*(N));

    //Plans for execution
    fftw_plan p;

    p = fftw_plan_dft_r2c_1d(N, input, out, FFTW_ESTIMATE);

    fftw_execute(p);

    //----This part calculate frequencies--------//
    //Frequencies 
    for (int i = 0; i< N / 2; ++i) {
        kx[i] = i / L;
    }

    kx[N / 2] = 0.00;

    for (int i = 0; i < ((N / 2) - 1); ++i) {
        kx[i + 1 + N / 2] = -kx[N / 2 - i - 1];
    }

    //Derivative
    for (int i = 0; i<N; i++) {
        //the frequencies is passed to this function to calculate
        //the derivatives
        Derivative(out[i][0], out[i][1], kx[i]);
    }

    fftw_plan pI;
    //Execution of Inverse FFT

    pI = fftw_plan_dft_c2r_1d(N, out, outI, FFTW_PRESERVE_INPUT);

    fftw_execute(pI);

    for (int i = 0; i<N; i++) {//Dividing by the size of the array
        Result[i] = (1.0 / N)*outI[i];
    }

    fftw_free(outI); fftw_free(out);
    fftw_free(input);
    fftw_destroy_plan(pI);  fftw_destroy_plan(p);
}

int main()
{
    //Creating and delcaring function variables
    double *initial, *w1, *w2, *w3, *w4, *y, *holder1, *holder2, *holder3;
    double dx = 2 * Pi / N, x = 0, t = 0, dt = 0.01;
    double h = pow(dx, 2), tmax = 100 * h;

    //creating arrays for the RK4 procedure
    initial = new double[N];
    w1 = new double[N]; w2 = new double[N]; y = new double[N];
    w3 = new double[N]; w4 = new double[N]; holder1 = new double[N];
    holder2 = new double[N]; holder3 = new double[N];
    double *resultArray = new double[N];
    double *resultnext = new double[N];
    int j = 1;

    // The stability parameter are declared but not used
    float alpha = 0.1, CFL = alpha * dt / (10 * pow(dx, 2));

    //Output files
    ofstream sendtofileINITIAL("HeatdataINITIAL.dat");
    ofstream sendtofile5("Heatdata5.dat");
    ofstream sendtofile25("Heatdata25.dat");
    ofstream sendtofile85("Heatdata85.dat");
    ofstream sendtofileFINAL("HeatdataFINAL.dat");

    //Initial data
    for (int i = 0; i < N; i++) {
        y[i] = Function(x);
        sendtofileINITIAL << i * 2 * Pi / N << " " << y[i] << endl;
        x += dx;
    }

    //RK4
    // y[i+1] = y[i] + (h/2)*(w1 + 2*w2 + 2*w3 + w4)
    // where the w1,w2,w3,w4 is the standard RK4 calculations
    // w1= f(y[i]), w2= f(y[i]+(h/2)*w1[i])
    // w3= f(y[i] + (h/2)*w2[i]) and w4 = f(y[i]+h*w3[i])
    while (t <= tmax) {

        FFT(y, resultArray);

        for (int i = 0; i < N; i++) {    //Calculating w1
            w1[i] = resultArray[i];
        }

        for (int i = 0; i < N; i++) {
            holder1[i] = y[i] + (h / 2)*w1[i];
        }

        FFT(holder1, resultArray);

        for (int i = 0; i < N; i++) {   //Calculating w2
            w2[i] = resultArray[i];
        }

        for (int i = 0; i < N; i++) {
            holder2[i] = y[i] + (h / 2)*w2[i];
        }

        FFT(holder2, resultArray);

        for (int i = 0; i < N; i++) {   //Calculating w3
            w3[i] = resultArray[i];
        }

        for (int i = 0; i < N; i++) {
            holder3[i] = y[i] + h * w3[i];
        }

        FFT(holder3, resultArray);

        for (int i = 0; i < N; i++) {   //Calculating w4
            w4[i] = resultArray[i];
        }

        for (int i = 0; i < N; i++) {
            y[i] += (h / 6.0)*(w1[i] + 2 * w2[i] + 2 * w3[i] + w4[i]);

            //Outputing data at certain time periods
            if (j == 5)
                sendtofile5 << i * 2 * Pi / N << " " << y[i] << endl;

            if (j == 25)
                sendtofile25 << i * 2 * Pi / N << " " << y[i] << endl;

            if (j == 85)
                sendtofile85 << i * 2 * Pi / N << " " << y[i] << endl;

            if (j == 100)
                sendtofileFINAL << i * 2 * Pi / N << " " << y[i] << endl;
        }
        j++;// counter
        t += h;// time counter
    }
    sendtofileINITIAL.close();
    sendtofile5.close();
    sendtofile25.close();
    sendtofile85.close();
    sendtofileFINAL.close();
    return 0;
}
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文