使用 GDAL 和 Python 的最小距离算法

发布于 2024-11-05 02:02:12 字数 973 浏览 8 评论 0原文

我正在尝试使用 GDAL 和 Python 实现图像分类的最小距离算法。计算样本区域的平均像素值并将其存储到数组列表(“sample_array”)中后,我将图像读入名为“values”的数组中。使用以下代码循环遍历该数组:

values = valBD.ReadAsArray()

# loop through pixel columns
for X in range(0,XSize):

    # loop thorugh pixel lines
    for Y in range (0, YSize):

        # initialize variables
        minDist = 9999
        # get minimum distance
        for iSample in range (0, sample_count):
            # dist = calc_distance(values[jPixel, iPixel], sample_array[iSample])

            # computing minimum distance
            iPixelVal = values[Y, X]
            mean = sample_array[iSample]
            dist = math.sqrt((iPixelVal - mean) * (iPixelVal - mean)) # only for testing

            if dist < minDist:
                minDist = dist
                values[Y, X] = iSample

classBD.WriteArray(values, xoff=0, yoff=0)

对于大图像,此过程需要很长时间。这就是为什么我想问是否有人知道更快的方法。我不太了解 python 中不同变量的访问速度。或者也许有人知道我可以使用的图书馆。 提前致谢, 马里奥

I'm trying to implement the Minimum Distance Algorithm for image classification using GDAL and Python. After calculating the mean pixel-value of the sample areas and storing them into a list of arrays ("sample_array"), I read the image into an array called "values". With the following code I loop through this array:

values = valBD.ReadAsArray()

# loop through pixel columns
for X in range(0,XSize):

    # loop thorugh pixel lines
    for Y in range (0, YSize):

        # initialize variables
        minDist = 9999
        # get minimum distance
        for iSample in range (0, sample_count):
            # dist = calc_distance(values[jPixel, iPixel], sample_array[iSample])

            # computing minimum distance
            iPixelVal = values[Y, X]
            mean = sample_array[iSample]
            dist = math.sqrt((iPixelVal - mean) * (iPixelVal - mean)) # only for testing

            if dist < minDist:
                minDist = dist
                values[Y, X] = iSample

classBD.WriteArray(values, xoff=0, yoff=0)

This procedure takes very long for big images. That's why I want to ask if somebody knows a faster method. I don't know much about access-speed of different variables in python. Or maybe someone knows a libary I could use.
Thanks in advance,
Mario

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

怂人 2024-11-12 02:02:12

您绝对应该使用 NumPy。我使用一些相当大的栅格数据集,NumPy 会烧毁它们。在我的机器上,使用下面的代码对于 1000 x 1000 阵列没有明显的延迟。代码后面有对其工作原理的解释。

import numpy as np
from scipy.spatial.distance import cdist

# some starter data
dim = (1000,1000)
values = np.random.randint(0, 10, dim)

# cdist will want 'samples' as a 2-d array
samples = np.array([1, 2, 3]).reshape(-1, 1)

# this could be a one-liner
# 'values' must have the same number of columns as 'samples'
mins = cdist(values.reshape(-1, 1), samples)
outvalues = mins.argmin(axis=1).reshape(dim)

cdist()< /code> 计算 values 中每个元素到 samples 中每个元素的“距离”。这会生成一个 1,000,000 x 3 的数组,其中每行 n 都有从原始数组中的像素 n 到每个样本值 [1, 2, 3]argmin(axis=1) 为您提供每行最小值的索引,这就是您想要的。快速重塑可为您提供图像所需的矩形格式。

You should definitely be using NumPy. I work with some pretty large raster datasets and NumPy burns through them. On my machine, with the code below there's no noticeable delay for a 1000 x 1000 array. An explanation of how this works follows the code.

import numpy as np
from scipy.spatial.distance import cdist

# some starter data
dim = (1000,1000)
values = np.random.randint(0, 10, dim)

# cdist will want 'samples' as a 2-d array
samples = np.array([1, 2, 3]).reshape(-1, 1)

# this could be a one-liner
# 'values' must have the same number of columns as 'samples'
mins = cdist(values.reshape(-1, 1), samples)
outvalues = mins.argmin(axis=1).reshape(dim)

cdist() calculates the "distance" from each element in values to each of the elements in samples. This generates a 1,000,000 x 3 array, where each row n has the distance from pixel nin the original array to each of the sample values [1, 2, 3]. argmin(axis=1) gives you the index of the minimum value along each row, which is what you want. A quick reshape gives you the rectangular format you'd expect for an image.

匿名。 2024-11-12 02:02:12

同意 Thomas K 的观点:使用 PIL,或者编写一个 C 函数并使用例如 ctypes 包装它,或者至少使用一些 numPy 矩阵运算
或者在现有代码上使用 pypy(对于图像代码,JIT 编译的代码可以快 100 倍)。尝试 pypy 并告诉我们您获得了多少加速。

底线:永远不要在 cPython 中像这样原生地进行像素级的操作,解释和内存管理开销会杀了你。

Agree with Thomas K: use PIL, or else write a C-function and wrap it using e.g. ctypes, or at very least use some numPy matrix operations.
Or else use pypy on your existing code (JIT-compiled code can be 100x faster, on image code). Try pypy and tell us what speedup you got.

Bottom line: never do stuff pixel-wise like this natively in cPython, the interpreting and memory-mgt overhead will kill you.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文