'eig' 和有什么不一样?和“eigs”?

发布于 2024-11-04 16:53:06 字数 75 浏览 0 评论 0原文

我对此进行了很多搜索,但我找不到任何关于“eig”和“eigs”这两种方法有何不同的答案。从它们接收到的特征值和特征向量之间有什么区别?

I've searched a lot for this but I can't find any answer about how the two methods 'eig' and 'eigs' differ. What is the difference between the eigenvalues and eigenvectors received from them?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

没︽人懂的悲伤 2024-11-11 16:53:06

他们使用不同的算法,针对不同的问题和不同的目标量身定制。

eig 是一个良好、快速、通用的特征值/向量求解器。当您的矩阵具有适合内存的实际大小以及当您需要所有特征值/向量时,它适合使用。稀疏矩阵在 eig 中根本不起作用。

Eigs 是一种更适合仅需要特征值/向量的有限子集的求解器。这里矩阵通常以稀疏格式存储,因为作为完整矩阵,它会占用太多内存来存储。看来 eigs 是基于 ARPACK 的。

如果您确实询问实际算法的细节,那么这个问题显然不适合本网站。坐下来阅读《矩阵计算》,或者更好的是,阅读 eigs 文档中列出的一对参考文献。

They use different algorithms, tailored to different problems and different goals.

eig is a good, fast, general use eigenvalue/vector solver. It is appropriate for use when your matrix is of a realistic size that fits well in memory, and when you need all of the eigenvalues/vectors. Sparse matrices do not work at all in eig.

Eigs is a solver that is more appropriate for when you need only a limited subset of the eigenvalues/vectors. Here the matrix is often stored in sparse format, because as a full matrix, it would take up too much memory to store. It appears that eigs is based on ARPACK.

If you truly are asking for specifics on the actual algorithms, this is a question that is clearly inappropriate for this site. Sit down with a copy of "Matrix Computations", or better yet, read the pair of references listed in the doc for eigs.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文