C++使用优先级队列时调试断言失败,表达式:无效堆

发布于 2024-11-04 15:04:31 字数 5831 浏览 5 评论 0原文

环境:
- Win7 专业版 x64
- VS2010
- C++
- 空项目

目标: 使用优先级队列实现 Dijkstra 的最短路径算法。

问题: 当程序运行时,它会收到“调试断言失败,表达式:无效堆”错误。如果用户输入源顶点为 1,则一切正常。仅当源顶点不为 1 时才会发生断言。此外,如果忽略断言,代码最终会完成并输出通过图形的正确路径。我猜测该错误与更改优先级队列中的指针指向的数据有关,但如果是这种情况,我不明白为什么使用 1 作为源可以让代码成功完成。

感谢您的任何帮助!

标题:

#ifndef _GRAPH_H_
#define _GRAPH_H_
#include <map>
#include <queue>
#include <vector>
#include <fstream>

using namespace std;

class Graph
{

public:

    struct Vertex
    {
        int name; // V number
        double dv; // distance
        Vertex* pv; // previous V* from this V
        map<Vertex*, double> neighbors; // map of all neighbors/distances connected to vert
    };

    vector<Vertex*> verts; // vector of all V*

    void dijkstra(ifstream& stream, int start_vert); // create graph & find shortest paths
    void printPath(Vertex* v); // echo path

    class CompareVert // overloaded compare operator for priorty queue data struct, sort queue so V with smallest dist on top
    {
    public:
        bool operator()(const Vertex* v1, const Vertex* v2) const
        {
            return v1->dv > v2->dv;
        }
    };
};

#endif

实现:

#include "Graph.h"
#include <iostream>
#include <queue>
#include <limits> // used for numeric_limits<double>::infinity()
#include <vector>

using namespace std;

int path_length = 0;

void Graph::printPath(Vertex* v) // print shortest paths
{
    if (v->pv != NULL)
    {
        printPath(v->pv);
        cout << " -> ";
    }
    cout << v->name;
}

void Graph::dijkstra(ifstream& stream, int start_vert) // create graph & get shortest path
{
    /////////////////////////////////////////////
    /////////////// create graph ////////////////
    /////////////////////////////////////////////

    int total_edges;
    priority_queue<Vertex*, vector<Vertex*>, CompareVert> q;
    double infinity = numeric_limits<double>::infinity();
    int source;
    int dest;
    double dist;
    stream >> total_edges;
    for (int i=0;i<total_edges;i++)
    {
        stream >> source;
        stream >> dest;
        stream >> dist;
        bool source_exists = false;
        bool dest_exists = false;
        Vertex* _source;
        Vertex* _dest;

        for (int i=0;i<verts.size();i++)
        {
            if (verts.at(i)->name == source) // vertex already exists, set to V
            {
                _source = verts.at(i);
                source_exists = true;
                break;
            }
        }

        for (int i=0;i<verts.size();i++)
        {
            if (verts.at(i)->name == dest) // vertex already exists, set to V
            {
                _dest = verts.at(i);
                dest_exists = true;
                break;
            }
        }

        if (!source_exists) // create vert
        {
            _source = new Vertex;
            _source->name = source;
            _source->dv = infinity;
            _source->pv = NULL;
            verts.push_back(_source);
        }

        if (!dest_exists) // create vert
        {
            _dest = new Vertex;
            _dest->name = dest;
            _dest->dv = infinity;
            _dest->pv = NULL;
            verts.push_back(_dest);
        }
        _source->neighbors.insert(pair<Vertex*, double>(_dest, dist)); // populate V's adjacency map
    }

    for (int i=0;i<verts.size();i++)
    {
        if (verts.at(i)->name == start_vert) // set source
        {
            verts.at(i)->dv = 0;
        }       
        q.push(verts.at(i)); // push all vertices to priority queue
    }

    /////////////////////////////////////////////
    ////////////////  find paths  ///////////////
    /////////////////////////////////////////////

    vector<int> displayed;
    bool print; // flag to call printPath
    while (!q.empty())
    {
        map<Vertex*, double>::iterator it;
        Vertex* temp = q.top(); // get V with smallest dist
        print = true;
        for (it = temp->neighbors.begin(); it!=temp->neighbors.end();++it)
        {
            if ((temp->dv + it->second) < it->first->dv)
            {
                print = false;
                it->first->dv = (temp->dv + it->second);
                it->first->pv = temp;
                q.push(it->first);
            }
        }

        for (int i=0;i<displayed.size();i++) // if end V of path has already been printed, do not print
        {
            if (displayed.at(i) == temp->name)
                print = false;
        }

        if (print == true)
        {
            printPath(temp);
            path_length = temp->dv;
            cout << " total distance = " << path_length <<endl << endl;
            displayed.push_back(temp->name);
        }

        path_length = 0;
        q.pop();
    }
}

驱动程序:

#include "Graph.h"
#include <stdio.h>
#include <iostream>
#include <string>
#include <fstream>
#include <list>

using namespace std;

string fname;
int vname;
string line;

int main(void)
{
    cout << "Please enter the file to read in a graph (graph.txt): ";
    cin >> fname;
    cout << "Please choose a starting vertex (1 is a good choice): ";
    cin >> vname;
    cout << endl;

    ifstream my_stream (fname);
    Graph my_graph;
    my_graph.dijkstra(my_stream, vname);
    my_stream.close();
}

graph.txt:

12
1 2 2
1 4 1
2 4 3
2 5 10
3 1 4
3 6 5
4 3 2
4 5 2
4 6 8
4 7 4
5 7 6
7 6 1

Environment:
- Win7 pro x64
- VS2010
- C++
- Empty Project

Goal:
Implementation of Dijkstra's shortest path algo using a priority queue.

Problem:
When the program runs it gets a Debug assertion failed, Expression: invalid heap error. If the user inputs the source vertex as 1, everything works fine. The assertion only occurs when the source vertex is other than 1. Also, if the assertions are ignored, the code finishes eventually and outputs the proper paths through the graph. I am guessing the error has something to do with altering the data that pointers in the priority queue point to, but if this is the case, I don't understand why using 1 as the source allows the code to complete successfully.

Thanks for any and all help!

header:

#ifndef _GRAPH_H_
#define _GRAPH_H_
#include <map>
#include <queue>
#include <vector>
#include <fstream>

using namespace std;

class Graph
{

public:

    struct Vertex
    {
        int name; // V number
        double dv; // distance
        Vertex* pv; // previous V* from this V
        map<Vertex*, double> neighbors; // map of all neighbors/distances connected to vert
    };

    vector<Vertex*> verts; // vector of all V*

    void dijkstra(ifstream& stream, int start_vert); // create graph & find shortest paths
    void printPath(Vertex* v); // echo path

    class CompareVert // overloaded compare operator for priorty queue data struct, sort queue so V with smallest dist on top
    {
    public:
        bool operator()(const Vertex* v1, const Vertex* v2) const
        {
            return v1->dv > v2->dv;
        }
    };
};

#endif

implementation:

#include "Graph.h"
#include <iostream>
#include <queue>
#include <limits> // used for numeric_limits<double>::infinity()
#include <vector>

using namespace std;

int path_length = 0;

void Graph::printPath(Vertex* v) // print shortest paths
{
    if (v->pv != NULL)
    {
        printPath(v->pv);
        cout << " -> ";
    }
    cout << v->name;
}

void Graph::dijkstra(ifstream& stream, int start_vert) // create graph & get shortest path
{
    /////////////////////////////////////////////
    /////////////// create graph ////////////////
    /////////////////////////////////////////////

    int total_edges;
    priority_queue<Vertex*, vector<Vertex*>, CompareVert> q;
    double infinity = numeric_limits<double>::infinity();
    int source;
    int dest;
    double dist;
    stream >> total_edges;
    for (int i=0;i<total_edges;i++)
    {
        stream >> source;
        stream >> dest;
        stream >> dist;
        bool source_exists = false;
        bool dest_exists = false;
        Vertex* _source;
        Vertex* _dest;

        for (int i=0;i<verts.size();i++)
        {
            if (verts.at(i)->name == source) // vertex already exists, set to V
            {
                _source = verts.at(i);
                source_exists = true;
                break;
            }
        }

        for (int i=0;i<verts.size();i++)
        {
            if (verts.at(i)->name == dest) // vertex already exists, set to V
            {
                _dest = verts.at(i);
                dest_exists = true;
                break;
            }
        }

        if (!source_exists) // create vert
        {
            _source = new Vertex;
            _source->name = source;
            _source->dv = infinity;
            _source->pv = NULL;
            verts.push_back(_source);
        }

        if (!dest_exists) // create vert
        {
            _dest = new Vertex;
            _dest->name = dest;
            _dest->dv = infinity;
            _dest->pv = NULL;
            verts.push_back(_dest);
        }
        _source->neighbors.insert(pair<Vertex*, double>(_dest, dist)); // populate V's adjacency map
    }

    for (int i=0;i<verts.size();i++)
    {
        if (verts.at(i)->name == start_vert) // set source
        {
            verts.at(i)->dv = 0;
        }       
        q.push(verts.at(i)); // push all vertices to priority queue
    }

    /////////////////////////////////////////////
    ////////////////  find paths  ///////////////
    /////////////////////////////////////////////

    vector<int> displayed;
    bool print; // flag to call printPath
    while (!q.empty())
    {
        map<Vertex*, double>::iterator it;
        Vertex* temp = q.top(); // get V with smallest dist
        print = true;
        for (it = temp->neighbors.begin(); it!=temp->neighbors.end();++it)
        {
            if ((temp->dv + it->second) < it->first->dv)
            {
                print = false;
                it->first->dv = (temp->dv + it->second);
                it->first->pv = temp;
                q.push(it->first);
            }
        }

        for (int i=0;i<displayed.size();i++) // if end V of path has already been printed, do not print
        {
            if (displayed.at(i) == temp->name)
                print = false;
        }

        if (print == true)
        {
            printPath(temp);
            path_length = temp->dv;
            cout << " total distance = " << path_length <<endl << endl;
            displayed.push_back(temp->name);
        }

        path_length = 0;
        q.pop();
    }
}

driver:

#include "Graph.h"
#include <stdio.h>
#include <iostream>
#include <string>
#include <fstream>
#include <list>

using namespace std;

string fname;
int vname;
string line;

int main(void)
{
    cout << "Please enter the file to read in a graph (graph.txt): ";
    cin >> fname;
    cout << "Please choose a starting vertex (1 is a good choice): ";
    cin >> vname;
    cout << endl;

    ifstream my_stream (fname);
    Graph my_graph;
    my_graph.dijkstra(my_stream, vname);
    my_stream.close();
}

graph.txt:

12
1 2 2
1 4 1
2 4 3
2 5 10
3 1 4
3 6 5
4 3 2
4 5 2
4 6 8
4 7 4
5 7 6
7 6 1

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

贱贱哒 2024-11-11 15:04:31

您应该在调用 q.top() 之后立即从priority_queue 中弹出顶部元素。相反,您在使用 q.push(it->first); 将新元素推入队列后执行 q.pop()

在我看来这不是您想要的,因为您现在可能会这样做弹出一个与您认为的顶部元素不同的元素。

You should pop the top element from the priority_queue right after your call to q.top(). Instead you do q.pop() after pushing a new element into the queue with q.push(it->first);

That seems to me to be not what you want because you could now potentially be popping an element different from what you thought was the top element.

还不是爱你 2024-11-11 15:04:31

您可能正在将 Vertex 实例推送到无限 距离。比较两个无限距离不会产生任何一个比另一个,因此使您的比较器无效。

如果这严格来说是一个学习练习,并且您并不真正需要距离,我建议您使用整数距离并使用“大”数字代替无限

使用 N 位整数时,最好使用 2^(N-3) 作为您的 无限 值,因为将它们相加会产生 < code>2^(N-2) 仍然可以用有符号的 N 位整数表示(不是这样 2^(N-1)),并且它是一个比简单的无限,即无限 + 无限 >无限,这使您的排序保持理智。

Its possible you're pushing Vertex instances with infinite distances. Comparing two infinite distances would yield none of them being smaller than the other, therefore invalidating your comparator.

If this is strictly a learning exercise and you don't really require double distances, I suggest you use integer distances and use a "large" number in place of infinite.

Using N bit integers it is a good idea to use 2^(N-3) as your infinite value, because adding them would yield 2^(N-2) which is still representable by a signed N bit integer (not so 2^(N-1)), and it is a larger value than a simple infinite, i.e. infinite + infinite > infinite, which keeps your ordering sane.

软甜啾 2024-11-11 15:04:31

您应该避免修改优先级队列中当前的元素,至少不要以修改其优先级的方式。
顶点的优先级由CompareVert给出,它取决于dv的值。
在“查找路径部分”中,

 if ((temp->dv + it->second) < it->first->dv)
 {
     print = false;
     it->first->dv = (temp->dv + it->second);   // <-- here is the problem!
     it->first->pv = temp;
     q.push(it->first);
  }

dv 的分配会影响队列中当前的元素。当您调用 q.push() 时,队列意识到它处于无效状态并抱怨

You should avoid modifying elements that are currently in the priority queue, at least not in a way that modify their priority.
The priority of the vertices is given by CompareVert, which depends on the value of dv.
In the "find path section" you have

 if ((temp->dv + it->second) < it->first->dv)
 {
     print = false;
     it->first->dv = (temp->dv + it->second);   // <-- here is the problem!
     it->first->pv = temp;
     q.push(it->first);
  }

The assignment to dv affect an element currently in the queue. When you call q.push(), the queue realizes it's in an invalid state and complains

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文