We don’t allow questions seeking recommendations for software libraries, tutorials, tools, books, or other off-site resources. You can edit the question so it can be answered with facts and citations.
Closed 8 years ago.
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
接受
或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
发布评论
评论(6)
我建议您查看PULP和/或Pyomo。
I'd recommend looking at PULP and/or Pyomo.
cvxopt 是由 Lieven Vandenberghe 和他的一些合作者编写的。 (这与 Boyd 和 Vandenberghe 广泛使用的凸优化教科书中的 Vandenberghe 相同。)它是一个通用的凸圆锥规划求解器,并使用内点方法。从好的方面来说,它有详细的文档,有很多示例,并且易于使用。我相信它的扩展性相当好,尽管不如 Xpress、Gurobi 或 cplex 等商业产品。
不过,似乎有一个对 scipy 的拉取请求,其中包含(纯 python)线性编程实现。因此,线性规划求解器将来可能会出现在 scipy 中。
cvxopt is written by Lieven Vandenberghe and some of his collaborators. (This is the same Vandenberghe of the widely used convex optimization textbook by Boyd and Vandenberghe.) It's a general convex conic programming solver, and uses an interior point method. On the plus side it's well-documented, has many examples, and is easy to use. I believe it scales fairly well, though not as well as commercial products like Xpress, Gurobi, or cplex.
Looks like there's a pull request to scipy containing a (pure python) linear programming implementation, though. So a linear programming solver could be in scipy in the future.
您可能会从硬币或一组库中查看 PuLP。
http://www.coin-or.org/projects/
You might look at PuLP from the coin-or set of libraries.
http://www.coin-or.org/projects/
我不知道你具体想做什么,但 NumPy/SciPy 通常是在 Python 中查找与数学相关的任何内容的第一个地方。
I don't know what you are specifically trying to do, but NumPy/SciPy are the usually first places to look for anything math related in Python.
您还可以查看 or-tools,其中包含广泛使用的包装器线性求解器,例如 GLPK。
You can also take a look at or-tools, which includes a wrapper around widely used linear solvers such as GLPK.
截至 2015 年,scipy 包含一种直接通过 scipy.optimize.linprog。它使用 Simplex 算法。
As of 2015, scipy includes a method to solve linear programming models directly through scipy.optimize.linprog. It uses the Simplex algorithm.