背包问题(经典)
所以我必须在课堂上解决背包问题。到目前为止,我已经提出了以下建议。我的比较器是确定两个主题中哪一个是更好的选择的函数(通过查看相应的(值,工作)元组)。
我决定迭代工作量小于 maxWork 的可能科目,为了找到在任何给定回合中哪个科目是最佳选择,我将我最近的科目与我们尚未使用的所有其他科目进行了比较。
def greedyAdvisor(subjects, maxWork, comparator):
"""
Returns a dictionary mapping subject name to (value, work) which includes
subjects selected by the algorithm, such that the total work of subjects in
the dictionary is not greater than maxWork. The subjects are chosen using
a greedy algorithm. The subjects dictionary should not be mutated.
subjects: dictionary mapping subject name to (value, work)
maxWork: int >= 0
comparator: function taking two tuples and returning a bool
returns: dictionary mapping subject name to (value, work)
"""
optimal = {}
while maxWork > 0:
new_subjects = dict((k,v) for k,v in subjects.items() if v[1] < maxWork)
key_list = new_subjects.keys()
for name in new_subjects:
#create a truncated dictionary
new_subjects = dict((name, new_subjects.get(name)) for name in key_list)
key_list.remove(name)
#compare over the entire dictionary
if reduce(comparator,new_subjects.values())==True:
#insert this name into the optimal dictionary
optimal[name] = new_subjects[name]
#update maxWork
maxWork = maxWork - subjects[name][1]
#and restart the while loop with maxWork updated
break
return optimal
问题是我不知道为什么这是错误的。我收到错误,我不知道我的代码哪里错了(即使在抛出 print 语句之后)。非常感谢您的帮助,谢谢!
So I have to solve the knapsack problem for class. So far, I've come up with the following. My comparators are functions that determine which of two subjects will be the better option (by looking at the corresponding (value,work) tuples).
I decided to iterate over the possible subjects with work less than maxWork, and in order to find which subject is the best option at any given turn, I compared my most recent subject to all the other subjects that we have not used yet.
def greedyAdvisor(subjects, maxWork, comparator):
"""
Returns a dictionary mapping subject name to (value, work) which includes
subjects selected by the algorithm, such that the total work of subjects in
the dictionary is not greater than maxWork. The subjects are chosen using
a greedy algorithm. The subjects dictionary should not be mutated.
subjects: dictionary mapping subject name to (value, work)
maxWork: int >= 0
comparator: function taking two tuples and returning a bool
returns: dictionary mapping subject name to (value, work)
"""
optimal = {}
while maxWork > 0:
new_subjects = dict((k,v) for k,v in subjects.items() if v[1] < maxWork)
key_list = new_subjects.keys()
for name in new_subjects:
#create a truncated dictionary
new_subjects = dict((name, new_subjects.get(name)) for name in key_list)
key_list.remove(name)
#compare over the entire dictionary
if reduce(comparator,new_subjects.values())==True:
#insert this name into the optimal dictionary
optimal[name] = new_subjects[name]
#update maxWork
maxWork = maxWork - subjects[name][1]
#and restart the while loop with maxWork updated
break
return optimal
The problem is I don't know why this is wrong. I'm getting errors and I have no idea where my code is wrong (even after throwing in print statements). Help would be much appreciated, thanks!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
与 OPT 相比,使用简单的贪心算法不会对解决方案的质量提供任何限制。
这是背包的完全多项式时间 (1 - epsilon) * OPT 近似伪代码:
我们现在需要定义最有利可图的集合算法。我们可以通过一些动态规划来做到这一点。但首先让我们回顾一下一些定义。
如果 P 是集合中利润最高的商品,n 是我们拥有的商品数量,那么 nP 显然是允许利润的一个微不足道的上限。对于 {1,...,n} 中的每个 i 和 {1,...,nP} 中的 p,我们让 Sip 表示总利润恰好 p 且总规模的项目子集被最小化。然后我们让 A(i,p) 表示集合 Sip 的大小(如果不存在则无穷大)。我们可以很容易地证明 A(1,p) 对于 {1,...,nP} 中 p 的所有值都是已知的。我们将定义一个递归来计算 A(i,p),我们将其用作动态规划问题,以返回近似解。
最后我们给出 _most_prof_set
来源
Using a simple greedy algorithm will not provide any bounds on the quality of the solution in comparison to OPT.
Here is a fully polynomial time (1 - epsilon) * OPT approximation psuedocode for knapsack:
We need to define the most profitable set algorithm now. We can do this with some dynamic programming. But first lets go over some definitions.
If P is the most profitable item in the set, and n is the amount of items we have, then nP is clearly a trivial upper bound on the profit allowed. For each i in {1,...,n} and p in {1,...,nP} we let Sip denote a subset of items whose total profit is exactly p and whose total size is minimized. We then let A(i,p) denote the size of set Sip (infinity if it doesn't exist). We can easily show that A(1,p) is known for all values of p in {1,...,nP}. We will define a recurrance to compute A(i,p) which we will use as a dynamic programming problem, to return the approximate solution.
Finally we give _most_prof_set
Source