整数序列的压缩算法

发布于 2024-11-01 16:41:01 字数 319 浏览 1 评论 0原文

对于大的整数序列(A/D 转换器数据),是否有好的压缩算法。有类似的问题

但我的情况数据不同。它可以是负数,也可以是正数,并且像波浪数据一样变化。

EDIT1:添加了示例数据

请参阅此文件获取数据示例

Are there any good compression algorithms for a large sequence of integers (A/D converter data). There is similar question

But the data is different in my case. It can be negarive or positive and changing like wave data.

EDIT1:sample data added

Please refer to this file for a data sample

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

人心善变 2024-11-08 16:41:01

一般来说,如果您对信号有一些了解,请使用它根据先前的值来预测下一个值。然后 - 压缩预测值和实际值之间的差异。

如果预测良好,差异就会很小,并且压缩效果也会很好。

如果没有看到数据并了解其物理性质,任何更具体的事情都是不可能的。

更新:

如果预测确实很好并且使用了有关依赖关系的所有知识,则差异可能是独立的,并且算术编码之类的东西适用于它们。

Generally if you have some knowledge about the signal, use it to predict next value basing on previous ones. Then - compress difference between predicted and real value.

If prediction is good, differences will be small and their compressing will be good.

Anything more specific is unlikely possible without seeing the data and knowing about its physical nature.

update:

If the prediction is really well and uses all knowledge about dependencies, the differences are likely to be independent and something like arithmetic encoding would work for them.

深海少女心 2024-11-08 16:41:01

您需要 Delta 编码,然后需要应用 RLE 或 Golomb 代码。哥伦布码可以与霍夫曼码一样好。

You want a Delta Encode and then you want to apply a RLE or a Golomb Code. The Golomb Code can be as good as a Huffman Code.

你对谁都笑 2024-11-08 16:41:01

几乎任何标准的字节串压缩算法都可以应用;毕竟,任何数据文件都可以解释为有符号整数序列。您认为您的特定整数有什么特别之处,可以使它们适合某些更具体的算法吗?你提到了波浪数据;也许看看FLAC,它是为音频数据设计的;如果您的数据具有相似的特征,那么这些技术可能很有价值。

Nearly any standard compression algorithm for byte strings can be applied; after all, any file of data can be interpreted as a sequence of signed integers. Is there something special about your particular integers that you think will make them amenable to some more-specific algorithm? You mention wave data; maybe take a look at FLAC which is designed for audio data; if your data has similar characteristics those techniques may be valuable.

寂寞陪衬 2024-11-08 16:41:01

您可以比较数据,然后在合适的子区域(即拐点之间)应用 RLE。

You could diff the data then apply RLE on suitable subregions (i.e. between inflection points).

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文