如何用Java实现子集和问题

发布于 2024-10-31 01:43:16 字数 1141 浏览 0 评论 0原文

有谁知道如何通过这个伪代码在Java中实现子集和问题?

w = an array of positive integers sorted in non-decreasing order.
W = the target sum value
include = an array or arraylist of the solutions who's weight adds up to W. After the print statement, this array can be deleted so that it can store the next solution.
weight = weight of elements in the include array.
total = weight of the remaining elements not in the include array.

public static void sum_of_subsets(index i, int weight, int total)
{
     if(promising(i))
     {
          if(weight == W)
          {
               System.out.print(include[1] through include[i]);
          }
          else
          {
               include[i + 1] = "yes";     //Include w[i + 1]
               sum_of)subsets(i + 1, weight + w[i + 1], total - w[i + 1]);
               include[i + 1] = "no";      //Do not include w[i + 1]
               sum_of_subsets(i + 1, weight, total - w[i + 1]);
          }
     }
}

public static boolean promising(index i);
{
     return (weight + total >= W) && (weight == W || weight + w[i + 1] <= W);
}

这真的让我感到困惑,所以如果你能添加评论那就太好了!

Does anyone know how to implement the Sum-of-Subsets problem in Java from this pseudo code?

w = an array of positive integers sorted in non-decreasing order.
W = the target sum value
include = an array or arraylist of the solutions who's weight adds up to W. After the print statement, this array can be deleted so that it can store the next solution.
weight = weight of elements in the include array.
total = weight of the remaining elements not in the include array.

public static void sum_of_subsets(index i, int weight, int total)
{
     if(promising(i))
     {
          if(weight == W)
          {
               System.out.print(include[1] through include[i]);
          }
          else
          {
               include[i + 1] = "yes";     //Include w[i + 1]
               sum_of)subsets(i + 1, weight + w[i + 1], total - w[i + 1]);
               include[i + 1] = "no";      //Do not include w[i + 1]
               sum_of_subsets(i + 1, weight, total - w[i + 1]);
          }
     }
}

public static boolean promising(index i);
{
     return (weight + total >= W) && (weight == W || weight + w[i + 1] <= W);
}

this is really baffling me, so if you could add comments that would be great!!!

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

酒几许 2024-11-07 01:43:16

该程序从一组数字中找到精确的对以形成所需的总和,该程序最后还会返回唯一的对。如果没有找到确切的子集,程序还会返回最近的/最接近的子集以形成所需的总和。您可以按原样运行程序来查看演示,然后根据需要进行修改。我在这里应用的逻辑是基于给定集合中的所有数字组合来获得所需的总和,您可以参考内联注释以获取更多信息

package com.test;

import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;

/**
 * 
 * @author ziya sayed
 * @email : [email protected]
 */
public class SumOfSubsets{

//  private static int[] numbers= {1,1,2,2,3,4};//set of numbers
    private static int[] numbers= {18,17,1};//set of numbers
//  private static final int SUM = 4;//desired sum
    private static final int SUM = 20;//desired sum

    public static void main(String[] args) {

        String binaryCount="";
        int[] nos=new int[numbers.length];
        //input set, and setting binary counter
        System.out.print("Input set numbers are : ");
        for (int no : numbers) {            
            if (no<=SUM) {
                System.out.print(no+" ");                                       
                nos[binaryCount.length()]=no;
                binaryCount+=1; //can we use sring builder or string.format
            }       

        }
        System.out.println();
        Arrays.sort(nos);//sort asc

        int totalNos = binaryCount.length();
        String subset="";   //chosen subset 
        int subsetSum=0;//to temp hold sum of chosen subset every iteration
        String nearestSubset="";//chosen closest subset if no exact subset
        int nearestSubsetSum=0;//to hold sum of chosen closest subset

        Set<String> rs = new HashSet<String>();//to hold result, it will also avoide duplicate pairs
        for (int i = Integer.parseInt(binaryCount, 2) ; i >0;i-- ) {//for all sum combinations
        //  System.out.println(i);
            binaryCount=String.format("%1$#" + totalNos + "s", Integer.toBinaryString(i)).replace(" ","0");//pad 0 to left if number is less than 6 digit binary for proper combinations

            subset="";
            subsetSum=0;

            for (int j=0 ;j<totalNos; j++) {//for active combinations sum

                if (binaryCount.charAt(j)=='1') {                   
                    subset+=nos[j]+" ";
                    subsetSum+=nos[j];
                }
            }
            if (subsetSum == SUM) {
            //  System.out.println(subset);//we can exit here if we need only one set
                rs.add(subset);
            }
            else{//use this for subset of numbers with nearest to desired sum
                if (subsetSum < SUM  && subsetSum > nearestSubsetSum && rs.isEmpty()) {
                    nearestSubsetSum = subsetSum;
                    nearestSubset = subset;

                }
            }

        }

        if (rs.isEmpty()) {
                System.out.println("Nearest Subset of "+SUM);
                System.out.println(nearestSubset);
        }
        else{
            System.out.println("Exact Subset of "+SUM);
            System.out.println(rs);//unique sub sets to remove duplicate pairs
        }

    }


}

This program finds the exact pairs from a set of numbers to form the desired sum, the program also returns the unique pairs in the end. The program also returns a nearest/closest subset to form the desired sum if no exact subset is found. You can run the program as is to see the demo and then do the modification if needed. The logic I have applied here is based on all combinations of numbers in a given set to get the desired sum, you can refer to inline comments for further information

package com.test;

import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;

/**
 * 
 * @author ziya sayed
 * @email : [email protected]
 */
public class SumOfSubsets{

//  private static int[] numbers= {1,1,2,2,3,4};//set of numbers
    private static int[] numbers= {18,17,1};//set of numbers
//  private static final int SUM = 4;//desired sum
    private static final int SUM = 20;//desired sum

    public static void main(String[] args) {

        String binaryCount="";
        int[] nos=new int[numbers.length];
        //input set, and setting binary counter
        System.out.print("Input set numbers are : ");
        for (int no : numbers) {            
            if (no<=SUM) {
                System.out.print(no+" ");                                       
                nos[binaryCount.length()]=no;
                binaryCount+=1; //can we use sring builder or string.format
            }       

        }
        System.out.println();
        Arrays.sort(nos);//sort asc

        int totalNos = binaryCount.length();
        String subset="";   //chosen subset 
        int subsetSum=0;//to temp hold sum of chosen subset every iteration
        String nearestSubset="";//chosen closest subset if no exact subset
        int nearestSubsetSum=0;//to hold sum of chosen closest subset

        Set<String> rs = new HashSet<String>();//to hold result, it will also avoide duplicate pairs
        for (int i = Integer.parseInt(binaryCount, 2) ; i >0;i-- ) {//for all sum combinations
        //  System.out.println(i);
            binaryCount=String.format("%1$#" + totalNos + "s", Integer.toBinaryString(i)).replace(" ","0");//pad 0 to left if number is less than 6 digit binary for proper combinations

            subset="";
            subsetSum=0;

            for (int j=0 ;j<totalNos; j++) {//for active combinations sum

                if (binaryCount.charAt(j)=='1') {                   
                    subset+=nos[j]+" ";
                    subsetSum+=nos[j];
                }
            }
            if (subsetSum == SUM) {
            //  System.out.println(subset);//we can exit here if we need only one set
                rs.add(subset);
            }
            else{//use this for subset of numbers with nearest to desired sum
                if (subsetSum < SUM  && subsetSum > nearestSubsetSum && rs.isEmpty()) {
                    nearestSubsetSum = subsetSum;
                    nearestSubset = subset;

                }
            }

        }

        if (rs.isEmpty()) {
                System.out.println("Nearest Subset of "+SUM);
                System.out.println(nearestSubset);
        }
        else{
            System.out.println("Exact Subset of "+SUM);
            System.out.println(rs);//unique sub sets to remove duplicate pairs
        }

    }


}
差↓一点笑了 2024-11-07 01:43:16

用 Java 编码的算法

首先,算法会删除所有大于开始时之和的数字。

然后,对于小于总和的最大数字,它检查列表中是否有任何数字可以与自身相加以获得总和。一旦我们找到一对,或者总和大于所需的总和,我们就可以中断,因为列表已排序。然后我们考虑第二大的数字,看看是否可以与它配对,依此类推。

   /**
    * This will find how many pairs of numbers in the given array sum
    * up to the given number.
    *
    * @param array - array of integers
    * @param sum - The sum
    * @return int - number of pairs.
    */
public static int sumOfSubset(int[] array, int sum)
{
        // This has a complexity of O ( n lg n )
        Arrays.sort(array);

        int pairCount = 0;
        int leftIndex = 0;
        int rightIndex = array.length - 1;

        // The portion below has a complextiy of
        //  O ( n ) in the worst case.
        while (array[rightIndex] > sum + array[0])
        {
            rightIndex--;    
        }

        while (leftIndex < rightIndex)
        {
            if (array[leftIndex] + array[rightIndex] == sum)
            {
                pairCount++;
                leftIndex++;
                rightIndex--;
            }
            else if(array[leftIndex] + array[rightIndex]  < sum)
            {
                leftIndex++;
            }
            else
            {
                rightIndex--;   
            }
        }

        return pairCount;
}

上面的算法不返回对,但是相加很简单。

Algorithms Coded in Java

First the algorithm removes all numbers that are larger than the sum to begin with.

Then for the largest number smaller than the sum, it checks if there are any numbers in the list that it can add to itself to get the sum. Once we have either found a pair, or the sum is greater than the desired sum, we can break since the list is sorted. We then consider the second largest number and see if we can make a pair with that, and so on.

   /**
    * This will find how many pairs of numbers in the given array sum
    * up to the given number.
    *
    * @param array - array of integers
    * @param sum - The sum
    * @return int - number of pairs.
    */
public static int sumOfSubset(int[] array, int sum)
{
        // This has a complexity of O ( n lg n )
        Arrays.sort(array);

        int pairCount = 0;
        int leftIndex = 0;
        int rightIndex = array.length - 1;

        // The portion below has a complextiy of
        //  O ( n ) in the worst case.
        while (array[rightIndex] > sum + array[0])
        {
            rightIndex--;    
        }

        while (leftIndex < rightIndex)
        {
            if (array[leftIndex] + array[rightIndex] == sum)
            {
                pairCount++;
                leftIndex++;
                rightIndex--;
            }
            else if(array[leftIndex] + array[rightIndex]  < sum)
            {
                leftIndex++;
            }
            else
            {
                rightIndex--;   
            }
        }

        return pairCount;
}

The algorithm above does not return the pairs, but that is trivially to add.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文