寻找迭代映射的不动点
我需要找到迭代映射的不动点x[n] == 1/2 x[n-1]^2 - Mu
。
我的做法:
Subscript[g, n_ ][Mu_, x_] := Nest[0.5 * x^2 - Mu, x, n]
fixedPoints[n_] := Solve[Subscript[g, n][Mu, x] == x, x]
Plot[
Evaluate[{x,
Table[Subscript[g, 1][Mu, x], {Mu, 0.5, 4, 0.5}]}
], {x, 0, 0.5}, Frame -> True]
I need to find fixed points of iterative map x[n] == 1/2 x[n-1]^2 - Mu
.
My approach:
Subscript[g, n_ ][Mu_, x_] := Nest[0.5 * x^2 - Mu, x, n]
fixedPoints[n_] := Solve[Subscript[g, n][Mu, x] == x, x]
Plot[
Evaluate[{x,
Table[Subscript[g, 1][Mu, x], {Mu, 0.5, 4, 0.5}]}
], {x, 0, 0.5}, Frame -> True]
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
我会稍微改变一下符号(主要是为了我自己能理解)。你可能想要这样的东西。
显着的特点是,现在嵌套的“函数”实际上是一个函数,格式正确。
示例:
丹尼尔·利希特布劳
I'll change notation slightly (mostly so I myself can understand it). You might want something like this.
The salient feature is that the "function" being nested now really is a function, in correct format.
Example:
Daniel Lichtblau
首先,你的方法有一个错误。 Nest 采用纯函数。另外,我会使用精确输入,即 1/2 而不是 0.5,因为 Solve 是符号求解器而不是数字求解器。
然后
First of all, there is an error in your approach. Nest takes a pure function. Also I would use exact input, i.e. 1/2 instead of 0.5 since Solve is a symbolic rather than numeric solver.
Then
旁注:
看看当你开始非常接近固定点时会发生什么(奇怪:):
< strong>编辑
事实上,你似乎有一个自动相似的结构:
A side note:
Look what happens when you start very near to a fixed point (weird :) :
Edit
In fact, it seems you have an autosimilar structure there: