电子邮件回复中的 RSA 技巧
A 对她的电子邮件使用 RSA 加密。 B 发现一封发给 A 的加密电子邮件:c = m^e mod n,他想知道明文。 B 知道当 A 回复她的电子邮件时,她总是在回复中包含她正在回复的邮件文本。
假设A只接收长度最多为log n的位串消息,可以是 映射到 Zn。
还假设 B 不能简单地将 c 作为自己的电子邮件发送给 A 并期望得到回复,但 A 将回复除 c 之外的电子邮件。
B 如何仅使用 c、e、n 和 Zn 中的随机值来学习 m?
A uses RSA encryption for her email. B finds an encrypted email to A: c = m^e mod n that he wants to know the plain text. B knows that when A replies to her email, she always includes the text of the message she is responding to in the reply.
Assume A only receives messages that are bit strings of length at most log n, which can be
mapped to Zn.
Also assume that B cannot simply send c as his own email to A and expect a reply, but that A will respond to email messages other than c.
How can B learn m using only c, e, n and random values from Zn?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
来自维基百科:
这实际上非常简洁,感谢您提出这个问题,引导我学习这一点。
至于你的3020 vs 600的问题,它是乘法;数学中很少使用连接,因为毕竟我们应该始终独立于基数工作。
From wikipedia:
That's actually pretty neat, thanks for asking the question that lead me to learning this.
As for your question of 3020 vs 600, it's multiplicative; rarely are concatenations used in mathematics, since after all we should always be working independent of base.