平滑手绘曲线

发布于 2024-10-29 01:30:14 字数 179 浏览 7 评论 0原文

我有一个允许用户绘制曲线的程序。但这些曲线看起来不太好——它们看起来摇摇欲坠,而且是手绘的。

所以我想要一种能够自动平滑它们的算法。我知道平滑过程中存在固有的模糊性,因此它不会每次都完美,但这种算法似乎确实存在于多个绘图包中,并且它们工作得很好。

有类似这样的代码示例吗? C# 是完美的,但我可以翻译其他语言。

I've got a program that allows users to draw curves. But these curves don't look nice - they look wobbly and hand-drawn.

So I want an algorithm that will automatically smooth them. I know there are inherent ambiguities in the smoothing process, so it won't be perfect every time, but such algorithms do seem to exist in several drawing packages and they work quite well.

Are there any code samples for something like this? C# would be perfect, but I can translate from other languages.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(6

风透绣罗衣 2024-11-05 01:30:14

您可以使用 Ramer–Douglas– 减少点数Peucker 算法 此处有一个 C# 实现。我使用 WPF PolyQuadraticBezierSegment 进行了尝试,根据容差,它显示出少量的改进。

经过一番搜索源(12)似乎表明使用Graphic Gems 效果很好,C 代码可用几何工具也有一些值得研究的资源。

这是我制作的一个粗略的示例,仍然存在一些小问题,但在很多情况下效果很好时间。这是 FitCurves.c 的快速而肮脏的 C# 端口。问题之一是,如果不减少原始点,则计算出的误差为 0,并且提前终止,样本会提前使用点减少算法。

/*
An Algorithm for Automatically Fitting Digitized Curves
by Philip J. Schneider
from "Graphics Gems", Academic Press, 1990
*/
public static class FitCurves
{
    /*  Fit the Bezier curves */

    private const int MAXPOINTS = 10000;
    public static List<Point> FitCurve(Point[] d, double error)
    {
        Vector tHat1, tHat2;    /*  Unit tangent vectors at endpoints */

        tHat1 = ComputeLeftTangent(d, 0);
        tHat2 = ComputeRightTangent(d, d.Length - 1);
        List<Point> result = new List<Point>();
        FitCubic(d, 0, d.Length - 1, tHat1, tHat2, error,result);
        return result;
    }


    private static void FitCubic(Point[] d, int first, int last, Vector tHat1, Vector tHat2, double error,List<Point> result)
    {
        Point[] bezCurve; /*Control points of fitted Bezier curve*/
        double[] u;     /*  Parameter values for point  */
        double[] uPrime;    /*  Improved parameter values */
        double maxError;    /*  Maximum fitting error    */
        int splitPoint; /*  Point to split point set at  */
        int nPts;       /*  Number of points in subset  */
        double iterationError; /*Error below which you try iterating  */
        int maxIterations = 4; /*  Max times to try iterating  */
        Vector tHatCenter;      /* Unit tangent vector at splitPoint */
        int i;

        iterationError = error * error;
        nPts = last - first + 1;

        /*  Use heuristic if region only has two points in it */
        if(nPts == 2)
        {
            double dist = (d[first]-d[last]).Length / 3.0;

            bezCurve = new Point[4];
            bezCurve[0] = d[first];
            bezCurve[3] = d[last];
            bezCurve[1] = (tHat1 * dist) + bezCurve[0];
            bezCurve[2] = (tHat2 * dist) + bezCurve[3];

            result.Add(bezCurve[1]);
            result.Add(bezCurve[2]);
            result.Add(bezCurve[3]);
            return;
        }

        /*  Parameterize points, and attempt to fit curve */
        u = ChordLengthParameterize(d, first, last);
        bezCurve = GenerateBezier(d, first, last, u, tHat1, tHat2);

        /*  Find max deviation of points to fitted curve */
        maxError = ComputeMaxError(d, first, last, bezCurve, u,out splitPoint);
        if(maxError < error)
        {
            result.Add(bezCurve[1]);
            result.Add(bezCurve[2]);
            result.Add(bezCurve[3]);
            return;
        }


        /*  If error not too large, try some reparameterization  */
        /*  and iteration */
        if(maxError < iterationError)
        {
            for(i = 0; i < maxIterations; i++)
            {
                uPrime = Reparameterize(d, first, last, u, bezCurve);
                bezCurve = GenerateBezier(d, first, last, uPrime, tHat1, tHat2);
                maxError = ComputeMaxError(d, first, last,
                           bezCurve, uPrime,out splitPoint);
                if(maxError < error)
                {
                    result.Add(bezCurve[1]);
                    result.Add(bezCurve[2]);
                    result.Add(bezCurve[3]);
                    return;
                }
                u = uPrime;
            }
        }

        /* Fitting failed -- split at max error point and fit recursively */
        tHatCenter = ComputeCenterTangent(d, splitPoint);
        FitCubic(d, first, splitPoint, tHat1, tHatCenter, error,result);
        tHatCenter.Negate();
        FitCubic(d, splitPoint, last, tHatCenter, tHat2, error,result);
    }

    static Point[] GenerateBezier(Point[] d, int first, int last, double[] uPrime, Vector tHat1, Vector tHat2)
    {
        int     i;
        Vector[,] A = new Vector[MAXPOINTS,2];/* Precomputed rhs for eqn    */

        int     nPts;           /* Number of pts in sub-curve */
        double[,]   C = new double[2,2];            /* Matrix C     */
        double[]    X = new double[2];          /* Matrix X         */
        double  det_C0_C1,      /* Determinants of matrices */
                det_C0_X,
                det_X_C1;
        double  alpha_l,        /* Alpha values, left and right */
                alpha_r;
        Vector  tmp;            /* Utility variable     */
        Point[] bezCurve = new Point[4];    /* RETURN bezier curve ctl pts  */
        nPts = last - first + 1;

        /* Compute the A's  */
            for (i = 0; i < nPts; i++) {
                Vector      v1, v2;
                v1 = tHat1;
                v2 = tHat2;
                v1 *= B1(uPrime[i]);
                v2 *= B2(uPrime[i]);
                A[i,0] = v1;
                A[i,1] = v2;
            }

            /* Create the C and X matrices  */
            C[0,0] = 0.0;
            C[0,1] = 0.0;
            C[1,0] = 0.0;
            C[1,1] = 0.0;
            X[0]    = 0.0;
            X[1]    = 0.0;

            for (i = 0; i < nPts; i++) {
                C[0,0] +=  V2Dot(A[i,0], A[i,0]);
                C[0,1] += V2Dot(A[i,0], A[i,1]);
        /*                  C[1][0] += V2Dot(&A[i][0], &A[i][9]);*/ 
                C[1,0] = C[0,1];
                C[1,1] += V2Dot(A[i,1], A[i,1]);

                tmp = ((Vector)d[first + i] -
                    (
                      ((Vector)d[first] * B0(uPrime[i])) +
                        (
                            ((Vector)d[first] * B1(uPrime[i])) +
                                    (
                                    ((Vector)d[last] * B2(uPrime[i])) +
                                        ((Vector)d[last] * B3(uPrime[i]))))));


            X[0] += V2Dot(A[i,0], tmp);
            X[1] += V2Dot(A[i,1], tmp);
            }

            /* Compute the determinants of C and X  */
            det_C0_C1 = C[0,0] * C[1,1] - C[1,0] * C[0,1];
            det_C0_X  = C[0,0] * X[1]    - C[1,0] * X[0];
            det_X_C1  = X[0]    * C[1,1] - X[1]    * C[0,1];

            /* Finally, derive alpha values */
            alpha_l = (det_C0_C1 == 0) ? 0.0 : det_X_C1 / det_C0_C1;
            alpha_r = (det_C0_C1 == 0) ? 0.0 : det_C0_X / det_C0_C1;

            /* If alpha negative, use the Wu/Barsky heuristic (see text) */
            /* (if alpha is 0, you get coincident control points that lead to
             * divide by zero in any subsequent NewtonRaphsonRootFind() call. */
            double segLength = (d[first] - d[last]).Length;
            double epsilon = 1.0e-6 * segLength;
            if (alpha_l < epsilon || alpha_r < epsilon)
            {
                /* fall back on standard (probably inaccurate) formula, and subdivide further if needed. */
                double dist = segLength / 3.0;
                bezCurve[0] = d[first];
                bezCurve[3] = d[last];
                bezCurve[1] = (tHat1 * dist) + bezCurve[0];
                bezCurve[2] = (tHat2 * dist) + bezCurve[3];
                return (bezCurve);
            }

            /*  First and last control points of the Bezier curve are */
            /*  positioned exactly at the first and last data points */
            /*  Control points 1 and 2 are positioned an alpha distance out */
            /*  on the tangent vectors, left and right, respectively */
            bezCurve[0] = d[first];
            bezCurve[3] = d[last];
            bezCurve[1] = (tHat1 * alpha_l) + bezCurve[0];
            bezCurve[2] = (tHat2 * alpha_r) + bezCurve[3];
            return (bezCurve);
        }

        /*
         *  Reparameterize:
         *  Given set of points and their parameterization, try to find
         *   a better parameterization.
         *
         */
        static double[] Reparameterize(Point[] d,int first,int last,double[] u,Point[] bezCurve)
        {
            int     nPts = last-first+1;    
            int     i;
            double[]    uPrime = new double[nPts];      /*  New parameter values    */

            for (i = first; i <= last; i++) {
                uPrime[i-first] = NewtonRaphsonRootFind(bezCurve, d[i], u[i-first]);
            }
            return uPrime;
        }



        /*
         *  NewtonRaphsonRootFind :
         *  Use Newton-Raphson iteration to find better root.
         */
        static double NewtonRaphsonRootFind(Point[] Q,Point P,double u)
        {
            double      numerator, denominator;
            Point[]     Q1 = new Point[3], Q2 = new Point[2];   /*  Q' and Q''          */
            Point       Q_u, Q1_u, Q2_u; /*u evaluated at Q, Q', & Q''  */
            double      uPrime;     /*  Improved u          */
            int         i;

            /* Compute Q(u) */
            Q_u = BezierII(3, Q, u);

            /* Generate control vertices for Q' */
            for (i = 0; i <= 2; i++) {
                Q1[i].X = (Q[i+1].X - Q[i].X) * 3.0;
                Q1[i].Y = (Q[i+1].Y - Q[i].Y) * 3.0;
            }

            /* Generate control vertices for Q'' */
            for (i = 0; i <= 1; i++) {
                Q2[i].X = (Q1[i+1].X - Q1[i].X) * 2.0;
                Q2[i].Y = (Q1[i+1].Y - Q1[i].Y) * 2.0;
            }

            /* Compute Q'(u) and Q''(u) */
            Q1_u = BezierII(2, Q1, u);
            Q2_u = BezierII(1, Q2, u);

            /* Compute f(u)/f'(u) */
            numerator = (Q_u.X - P.X) * (Q1_u.X) + (Q_u.Y - P.Y) * (Q1_u.Y);
            denominator = (Q1_u.X) * (Q1_u.X) + (Q1_u.Y) * (Q1_u.Y) +
                          (Q_u.X - P.X) * (Q2_u.X) + (Q_u.Y - P.Y) * (Q2_u.Y);
            if (denominator == 0.0f) return u;

            /* u = u - f(u)/f'(u) */
            uPrime = u - (numerator/denominator);
            return (uPrime);
        }



        /*
         *  Bezier :
         *      Evaluate a Bezier curve at a particular parameter value
         * 
         */
        static Point BezierII(int degree,Point[] V,double t)
        {
            int     i, j;       
            Point   Q;          /* Point on curve at parameter t    */
            Point[]     Vtemp;      /* Local copy of control points     */

            /* Copy array   */
            Vtemp = new Point[degree+1];
            for (i = 0; i <= degree; i++) {
                Vtemp[i] = V[i];
            }

            /* Triangle computation */
            for (i = 1; i <= degree; i++) { 
                for (j = 0; j <= degree-i; j++) {
                    Vtemp[j].X = (1.0 - t) * Vtemp[j].X + t * Vtemp[j+1].X;
                    Vtemp[j].Y = (1.0 - t) * Vtemp[j].Y + t * Vtemp[j+1].Y;
                }
            }

            Q = Vtemp[0];
            return Q;
        }


        /*
         *  B0, B1, B2, B3 :
         *  Bezier multipliers
         */
        static double B0(double u)
        {
            double tmp = 1.0 - u;
            return (tmp * tmp * tmp);
        }


        static double B1(double u)
        {
            double tmp = 1.0 - u;
            return (3 * u * (tmp * tmp));
        }

        static double B2(double u)
        {
            double tmp = 1.0 - u;
            return (3 * u * u * tmp);
        }

        static double B3(double u)
        {
            return (u * u * u);
        }

        /*
         * ComputeLeftTangent, ComputeRightTangent, ComputeCenterTangent :
         *Approximate unit tangents at endpoints and "center" of digitized curve
         */
        static Vector ComputeLeftTangent(Point[] d,int end)
        {
            Vector  tHat1;
            tHat1 = d[end+1]- d[end];
            tHat1.Normalize();
            return tHat1;
        }

        static Vector ComputeRightTangent(Point[] d,int end)
        {
            Vector  tHat2;
            tHat2 = d[end-1] - d[end];
            tHat2.Normalize();
            return tHat2;
        }

        static Vector ComputeCenterTangent(Point[] d,int center)
        {
            Vector  V1, V2, tHatCenter = new Vector();

            V1 = d[center-1] - d[center];
            V2 = d[center] - d[center+1];
            tHatCenter.X = (V1.X + V2.X)/2.0;
            tHatCenter.Y = (V1.Y + V2.Y)/2.0;
            tHatCenter.Normalize();
            return tHatCenter;
        }


        /*
         *  ChordLengthParameterize :
         *  Assign parameter values to digitized points 
         *  using relative distances between points.
         */
        static double[] ChordLengthParameterize(Point[] d,int first,int last)
        {
            int     i;  
            double[]    u = new double[last-first+1];           /*  Parameterization        */

            u[0] = 0.0;
            for (i = first+1; i <= last; i++) {
                u[i-first] = u[i-first-1] + (d[i-1] - d[i]).Length;
            }

            for (i = first + 1; i <= last; i++) {
                u[i-first] = u[i-first] / u[last-first];
            }

            return u;
        }




        /*
         *  ComputeMaxError :
         *  Find the maximum squared distance of digitized points
         *  to fitted curve.
        */
        static double ComputeMaxError(Point[] d,int first,int last,Point[] bezCurve,double[] u,out int splitPoint)
        {
            int     i;
            double  maxDist;        /*  Maximum error       */
            double  dist;       /*  Current error       */
            Point   P;          /*  Point on curve      */
            Vector  v;          /*  Vector from point to curve  */

            splitPoint = (last - first + 1)/2;
            maxDist = 0.0;
            for (i = first + 1; i < last; i++) {
                P = BezierII(3, bezCurve, u[i-first]);
                v = P - d[i];
                dist = v.LengthSquared;
                if (dist >= maxDist) {
                    maxDist = dist;
                    splitPoint = i;
                }
            }
            return maxDist;
        }

    private static double V2Dot(Vector a,Vector b) 
    {
        return((a.X*b.X)+(a.Y*b.Y));
    }

}

You can reduce the number of points using the Ramer–Douglas–Peucker algorithm there is a C# implementation here. I gave this a try using WPFs PolyQuadraticBezierSegment and it showed a small amount of improvement depending on the tolerance.

After a bit of searching sources (1,2) seem to indicate that using the curve fitting algorithm from Graphic Gems by Philip J Schneider works well, the C code is available. Geometric Tools also has some resources that could be worth investigating.

This is a rough sample I made, there are still some glitches but it works well a lot of the time. Here is the quick and dirty C# port of FitCurves.c. One of the issues is that if you don't reduce the original points the calculated error is 0 and it terminates early the sample uses the point reduction algorithm beforehand.

/*
An Algorithm for Automatically Fitting Digitized Curves
by Philip J. Schneider
from "Graphics Gems", Academic Press, 1990
*/
public static class FitCurves
{
    /*  Fit the Bezier curves */

    private const int MAXPOINTS = 10000;
    public static List<Point> FitCurve(Point[] d, double error)
    {
        Vector tHat1, tHat2;    /*  Unit tangent vectors at endpoints */

        tHat1 = ComputeLeftTangent(d, 0);
        tHat2 = ComputeRightTangent(d, d.Length - 1);
        List<Point> result = new List<Point>();
        FitCubic(d, 0, d.Length - 1, tHat1, tHat2, error,result);
        return result;
    }


    private static void FitCubic(Point[] d, int first, int last, Vector tHat1, Vector tHat2, double error,List<Point> result)
    {
        Point[] bezCurve; /*Control points of fitted Bezier curve*/
        double[] u;     /*  Parameter values for point  */
        double[] uPrime;    /*  Improved parameter values */
        double maxError;    /*  Maximum fitting error    */
        int splitPoint; /*  Point to split point set at  */
        int nPts;       /*  Number of points in subset  */
        double iterationError; /*Error below which you try iterating  */
        int maxIterations = 4; /*  Max times to try iterating  */
        Vector tHatCenter;      /* Unit tangent vector at splitPoint */
        int i;

        iterationError = error * error;
        nPts = last - first + 1;

        /*  Use heuristic if region only has two points in it */
        if(nPts == 2)
        {
            double dist = (d[first]-d[last]).Length / 3.0;

            bezCurve = new Point[4];
            bezCurve[0] = d[first];
            bezCurve[3] = d[last];
            bezCurve[1] = (tHat1 * dist) + bezCurve[0];
            bezCurve[2] = (tHat2 * dist) + bezCurve[3];

            result.Add(bezCurve[1]);
            result.Add(bezCurve[2]);
            result.Add(bezCurve[3]);
            return;
        }

        /*  Parameterize points, and attempt to fit curve */
        u = ChordLengthParameterize(d, first, last);
        bezCurve = GenerateBezier(d, first, last, u, tHat1, tHat2);

        /*  Find max deviation of points to fitted curve */
        maxError = ComputeMaxError(d, first, last, bezCurve, u,out splitPoint);
        if(maxError < error)
        {
            result.Add(bezCurve[1]);
            result.Add(bezCurve[2]);
            result.Add(bezCurve[3]);
            return;
        }


        /*  If error not too large, try some reparameterization  */
        /*  and iteration */
        if(maxError < iterationError)
        {
            for(i = 0; i < maxIterations; i++)
            {
                uPrime = Reparameterize(d, first, last, u, bezCurve);
                bezCurve = GenerateBezier(d, first, last, uPrime, tHat1, tHat2);
                maxError = ComputeMaxError(d, first, last,
                           bezCurve, uPrime,out splitPoint);
                if(maxError < error)
                {
                    result.Add(bezCurve[1]);
                    result.Add(bezCurve[2]);
                    result.Add(bezCurve[3]);
                    return;
                }
                u = uPrime;
            }
        }

        /* Fitting failed -- split at max error point and fit recursively */
        tHatCenter = ComputeCenterTangent(d, splitPoint);
        FitCubic(d, first, splitPoint, tHat1, tHatCenter, error,result);
        tHatCenter.Negate();
        FitCubic(d, splitPoint, last, tHatCenter, tHat2, error,result);
    }

    static Point[] GenerateBezier(Point[] d, int first, int last, double[] uPrime, Vector tHat1, Vector tHat2)
    {
        int     i;
        Vector[,] A = new Vector[MAXPOINTS,2];/* Precomputed rhs for eqn    */

        int     nPts;           /* Number of pts in sub-curve */
        double[,]   C = new double[2,2];            /* Matrix C     */
        double[]    X = new double[2];          /* Matrix X         */
        double  det_C0_C1,      /* Determinants of matrices */
                det_C0_X,
                det_X_C1;
        double  alpha_l,        /* Alpha values, left and right */
                alpha_r;
        Vector  tmp;            /* Utility variable     */
        Point[] bezCurve = new Point[4];    /* RETURN bezier curve ctl pts  */
        nPts = last - first + 1;

        /* Compute the A's  */
            for (i = 0; i < nPts; i++) {
                Vector      v1, v2;
                v1 = tHat1;
                v2 = tHat2;
                v1 *= B1(uPrime[i]);
                v2 *= B2(uPrime[i]);
                A[i,0] = v1;
                A[i,1] = v2;
            }

            /* Create the C and X matrices  */
            C[0,0] = 0.0;
            C[0,1] = 0.0;
            C[1,0] = 0.0;
            C[1,1] = 0.0;
            X[0]    = 0.0;
            X[1]    = 0.0;

            for (i = 0; i < nPts; i++) {
                C[0,0] +=  V2Dot(A[i,0], A[i,0]);
                C[0,1] += V2Dot(A[i,0], A[i,1]);
        /*                  C[1][0] += V2Dot(&A[i][0], &A[i][9]);*/ 
                C[1,0] = C[0,1];
                C[1,1] += V2Dot(A[i,1], A[i,1]);

                tmp = ((Vector)d[first + i] -
                    (
                      ((Vector)d[first] * B0(uPrime[i])) +
                        (
                            ((Vector)d[first] * B1(uPrime[i])) +
                                    (
                                    ((Vector)d[last] * B2(uPrime[i])) +
                                        ((Vector)d[last] * B3(uPrime[i]))))));


            X[0] += V2Dot(A[i,0], tmp);
            X[1] += V2Dot(A[i,1], tmp);
            }

            /* Compute the determinants of C and X  */
            det_C0_C1 = C[0,0] * C[1,1] - C[1,0] * C[0,1];
            det_C0_X  = C[0,0] * X[1]    - C[1,0] * X[0];
            det_X_C1  = X[0]    * C[1,1] - X[1]    * C[0,1];

            /* Finally, derive alpha values */
            alpha_l = (det_C0_C1 == 0) ? 0.0 : det_X_C1 / det_C0_C1;
            alpha_r = (det_C0_C1 == 0) ? 0.0 : det_C0_X / det_C0_C1;

            /* If alpha negative, use the Wu/Barsky heuristic (see text) */
            /* (if alpha is 0, you get coincident control points that lead to
             * divide by zero in any subsequent NewtonRaphsonRootFind() call. */
            double segLength = (d[first] - d[last]).Length;
            double epsilon = 1.0e-6 * segLength;
            if (alpha_l < epsilon || alpha_r < epsilon)
            {
                /* fall back on standard (probably inaccurate) formula, and subdivide further if needed. */
                double dist = segLength / 3.0;
                bezCurve[0] = d[first];
                bezCurve[3] = d[last];
                bezCurve[1] = (tHat1 * dist) + bezCurve[0];
                bezCurve[2] = (tHat2 * dist) + bezCurve[3];
                return (bezCurve);
            }

            /*  First and last control points of the Bezier curve are */
            /*  positioned exactly at the first and last data points */
            /*  Control points 1 and 2 are positioned an alpha distance out */
            /*  on the tangent vectors, left and right, respectively */
            bezCurve[0] = d[first];
            bezCurve[3] = d[last];
            bezCurve[1] = (tHat1 * alpha_l) + bezCurve[0];
            bezCurve[2] = (tHat2 * alpha_r) + bezCurve[3];
            return (bezCurve);
        }

        /*
         *  Reparameterize:
         *  Given set of points and their parameterization, try to find
         *   a better parameterization.
         *
         */
        static double[] Reparameterize(Point[] d,int first,int last,double[] u,Point[] bezCurve)
        {
            int     nPts = last-first+1;    
            int     i;
            double[]    uPrime = new double[nPts];      /*  New parameter values    */

            for (i = first; i <= last; i++) {
                uPrime[i-first] = NewtonRaphsonRootFind(bezCurve, d[i], u[i-first]);
            }
            return uPrime;
        }



        /*
         *  NewtonRaphsonRootFind :
         *  Use Newton-Raphson iteration to find better root.
         */
        static double NewtonRaphsonRootFind(Point[] Q,Point P,double u)
        {
            double      numerator, denominator;
            Point[]     Q1 = new Point[3], Q2 = new Point[2];   /*  Q' and Q''          */
            Point       Q_u, Q1_u, Q2_u; /*u evaluated at Q, Q', & Q''  */
            double      uPrime;     /*  Improved u          */
            int         i;

            /* Compute Q(u) */
            Q_u = BezierII(3, Q, u);

            /* Generate control vertices for Q' */
            for (i = 0; i <= 2; i++) {
                Q1[i].X = (Q[i+1].X - Q[i].X) * 3.0;
                Q1[i].Y = (Q[i+1].Y - Q[i].Y) * 3.0;
            }

            /* Generate control vertices for Q'' */
            for (i = 0; i <= 1; i++) {
                Q2[i].X = (Q1[i+1].X - Q1[i].X) * 2.0;
                Q2[i].Y = (Q1[i+1].Y - Q1[i].Y) * 2.0;
            }

            /* Compute Q'(u) and Q''(u) */
            Q1_u = BezierII(2, Q1, u);
            Q2_u = BezierII(1, Q2, u);

            /* Compute f(u)/f'(u) */
            numerator = (Q_u.X - P.X) * (Q1_u.X) + (Q_u.Y - P.Y) * (Q1_u.Y);
            denominator = (Q1_u.X) * (Q1_u.X) + (Q1_u.Y) * (Q1_u.Y) +
                          (Q_u.X - P.X) * (Q2_u.X) + (Q_u.Y - P.Y) * (Q2_u.Y);
            if (denominator == 0.0f) return u;

            /* u = u - f(u)/f'(u) */
            uPrime = u - (numerator/denominator);
            return (uPrime);
        }



        /*
         *  Bezier :
         *      Evaluate a Bezier curve at a particular parameter value
         * 
         */
        static Point BezierII(int degree,Point[] V,double t)
        {
            int     i, j;       
            Point   Q;          /* Point on curve at parameter t    */
            Point[]     Vtemp;      /* Local copy of control points     */

            /* Copy array   */
            Vtemp = new Point[degree+1];
            for (i = 0; i <= degree; i++) {
                Vtemp[i] = V[i];
            }

            /* Triangle computation */
            for (i = 1; i <= degree; i++) { 
                for (j = 0; j <= degree-i; j++) {
                    Vtemp[j].X = (1.0 - t) * Vtemp[j].X + t * Vtemp[j+1].X;
                    Vtemp[j].Y = (1.0 - t) * Vtemp[j].Y + t * Vtemp[j+1].Y;
                }
            }

            Q = Vtemp[0];
            return Q;
        }


        /*
         *  B0, B1, B2, B3 :
         *  Bezier multipliers
         */
        static double B0(double u)
        {
            double tmp = 1.0 - u;
            return (tmp * tmp * tmp);
        }


        static double B1(double u)
        {
            double tmp = 1.0 - u;
            return (3 * u * (tmp * tmp));
        }

        static double B2(double u)
        {
            double tmp = 1.0 - u;
            return (3 * u * u * tmp);
        }

        static double B3(double u)
        {
            return (u * u * u);
        }

        /*
         * ComputeLeftTangent, ComputeRightTangent, ComputeCenterTangent :
         *Approximate unit tangents at endpoints and "center" of digitized curve
         */
        static Vector ComputeLeftTangent(Point[] d,int end)
        {
            Vector  tHat1;
            tHat1 = d[end+1]- d[end];
            tHat1.Normalize();
            return tHat1;
        }

        static Vector ComputeRightTangent(Point[] d,int end)
        {
            Vector  tHat2;
            tHat2 = d[end-1] - d[end];
            tHat2.Normalize();
            return tHat2;
        }

        static Vector ComputeCenterTangent(Point[] d,int center)
        {
            Vector  V1, V2, tHatCenter = new Vector();

            V1 = d[center-1] - d[center];
            V2 = d[center] - d[center+1];
            tHatCenter.X = (V1.X + V2.X)/2.0;
            tHatCenter.Y = (V1.Y + V2.Y)/2.0;
            tHatCenter.Normalize();
            return tHatCenter;
        }


        /*
         *  ChordLengthParameterize :
         *  Assign parameter values to digitized points 
         *  using relative distances between points.
         */
        static double[] ChordLengthParameterize(Point[] d,int first,int last)
        {
            int     i;  
            double[]    u = new double[last-first+1];           /*  Parameterization        */

            u[0] = 0.0;
            for (i = first+1; i <= last; i++) {
                u[i-first] = u[i-first-1] + (d[i-1] - d[i]).Length;
            }

            for (i = first + 1; i <= last; i++) {
                u[i-first] = u[i-first] / u[last-first];
            }

            return u;
        }




        /*
         *  ComputeMaxError :
         *  Find the maximum squared distance of digitized points
         *  to fitted curve.
        */
        static double ComputeMaxError(Point[] d,int first,int last,Point[] bezCurve,double[] u,out int splitPoint)
        {
            int     i;
            double  maxDist;        /*  Maximum error       */
            double  dist;       /*  Current error       */
            Point   P;          /*  Point on curve      */
            Vector  v;          /*  Vector from point to curve  */

            splitPoint = (last - first + 1)/2;
            maxDist = 0.0;
            for (i = first + 1; i < last; i++) {
                P = BezierII(3, bezCurve, u[i-first]);
                v = P - d[i];
                dist = v.LengthSquared;
                if (dist >= maxDist) {
                    maxDist = dist;
                    splitPoint = i;
                }
            }
            return maxDist;
        }

    private static double V2Dot(Vector a,Vector b) 
    {
        return((a.X*b.X)+(a.Y*b.Y));
    }

}
冷情 2024-11-05 01:30:14

Kris 的答案是原始代码到 C# 的一个非常好的移植,但性能并不理想,并且在某些地方浮点不稳定可能会导致一些问题并返回 NaN 值(原始代码中也是如此)。我创建了一个库,其中包含我自己的端口以及 Ramer-Douglas-Peuker,并且不仅可以使用 WPF 点,还可以使用新的支持 SIMD 的矢量类型和 Unity 3D:

https://github.com/burningmime/curves

Kris's answer is a very good port of the original to C#, but the performance isn't ideal and there are some places where floating point instability can cause some issues and return NaN values (this is true in the original code too). I created a library that contains my own port of it as well as Ramer-Douglas-Peuker, and should work not only with WPF points, but the new SIMD-enabled vector types and Unity 3D also:

https://github.com/burningmime/curves

各自安好 2024-11-05 01:30:14

也许这篇基于 WPF+Bezier 的文章是一个好的开始:通过一组带有贝塞尔基元的 2D 点

Maybe this WPF+Bezier-based article is a good start: Draw a Smooth Curve through a Set of 2D Points with Bezier Primitives

方觉久 2024-11-05 01:30:14

嗯,克里斯的工作非常有用。

我意识到他指出的关于算法因计算错误以 0 结束的错误而提前终止的问题是由于重复了一个点并且计算出的正切是无限的这一事实。

我已经根据 Kris 的代码完成了 Java 的翻译,我相信它工作得很好:

编辑:

我仍在努力并试图在算法上获得更好的行为。我意识到,在非常尖的角度上,贝塞尔曲线的表现并不好。所以我尝试将贝塞尔曲线与线条结合起来,这就是结果:

import java.awt.Point;
import java.awt.Shape;
import java.awt.geom.CubicCurve2D;
import java.awt.geom.Line2D;
import java.awt.geom.Point2D;
import java.util.LinkedList;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;

import javax.vecmath.Point2d;
import javax.vecmath.Tuple2d;
import javax.vecmath.Vector2d;



/*
An Algorithm for Automatically Fitting Digitized Curves
by Philip J. Schneider
from "Graphics Gems", Academic Press, 1990
*/
public class FitCurves
{
/*  Fit the Bezier curves */

private final static int MAXPOINTS = 10000;
private final static double epsilon = 1.0e-6;

/**
 * Rubén:
 * This is the sensitivity. When it is 1, it will create a line if it is at least as long as the
 * distance from the previous control point.
 * When it is greater, it will create less lines, and when it is lower, more lines.
 * This is based on the previous control point since I believe it is a good indicator of the curvature
 * where it is coming from, and we don't want long and second derived constant curves to be modeled with
 * many lines.
 */
private static final double lineSensitivity=0.75;




public interface ResultCurve {
    public Point2D getStart();
    public Point2D getEnd();
    public Shape getShape();
}

public static class BezierCurve implements ResultCurve {
    public Point start;
    public Point end;
    public Point ctrl1;
    public Point ctrl2;
    public BezierCurve(Point2D start, Point2D ctrl1, Point2D ctrl2, Point2D end) {
        this.start=new Point((int)Math.round(start.getX()), (int)Math.round(start.getY()));
        this.end=new Point((int)Math.round(end.getX()), (int)Math.round(end.getY()));
        this.ctrl1=new Point((int)Math.round(ctrl1.getX()), (int)Math.round(ctrl1.getY()));
        this.ctrl2=new Point((int)Math.round(ctrl2.getX()), (int)Math.round(ctrl2.getY()));
        if(this.ctrl1.x<=1 || this.ctrl1.y<=1) {
            throw new IllegalStateException("ctrl1 invalid");
        }
        if(this.ctrl2.x<=1 || this.ctrl2.y<=1) {
            throw new IllegalStateException("ctrl2 invalid");
        }
    }
    public Shape getShape() {
        return new CubicCurve2D.Float(start.x, start.y, ctrl1.x, ctrl1.y, ctrl2.x, ctrl2.y, end.x, end.y);
    }
    public Point getStart() {
        return start;
    }
    public Point getEnd() {
        return end;
    }
}

public static class CurveSegment implements ResultCurve {
    Point2D start;
    Point2D end;
    public CurveSegment(Point2D startP, Point2D endP) {
        this.start=startP;
        this.end=endP;
    }
    public Shape getShape() {
        return new Line2D.Float(start, end);
    }
    public Point2D getStart() {
        return start;
    }
    public Point2D getEnd() {
        return end;
    }
}


public static List<ResultCurve> FitCurve(double[][] points, double error) {
    Point[] allPoints=new Point[points.length]; 
    for(int i=0; i < points.length; i++) {
        allPoints[i]=new Point((int) Math.round(points[i][0]), (int) Math.round(points[i][1]));
    }
    return FitCurve(allPoints, error);
}

public static List<ResultCurve> FitCurve(Point[] d, double error)
{
    Vector2d tHat1, tHat2;    /*  Unit tangent vectors at endpoints */

    int first=0;
    int last=d.length-1;
    tHat1 = ComputeLeftTangent(d, first);
    tHat2 = ComputeRightTangent(d, last);
    List<ResultCurve> result = new LinkedList<ResultCurve>();
    FitCubic(d, first, last, tHat1, tHat2, error, result);

    return result;
}


private static void FitCubic(Point[] d, int first, int last, Vector2d tHat1, Vector2d tHat2, double error, List<ResultCurve> result)
{
    PointE[] bezCurve; /*Control points of fitted Bezier curve*/
    double[] u;     /*  Parameter values for point  */
    double[] uPrime;    /*  Improved parameter values */
    double maxError;    /*  Maximum fitting error    */
    int nPts;       /*  Number of points in subset  */
    double iterationError; /*Error below which you try iterating  */
    int maxIterations = 4; /*  Max times to try iterating  */
    Vector2d tHatCenter;      /* Unit tangent vector at splitPoint */
    int i;
    double errorOnLine=error;

    iterationError = error * error;
    nPts = last - first + 1;

    AtomicInteger outputSplitPoint=new AtomicInteger();

    /**
     * Rubén: Here we try to fit the form with a line, and we mark the split point if we find any line with a minimum length
     */
    /*
     * the minimum distance for a length (so we don't create a very small line, when it could be slightly modeled with the previous Bezier,
     * will be proportional to the distance of the previous control point of the last Bezier.
     */
    BezierCurve res=null;
    for(i=result.size()-1; i >0; i--) {
        ResultCurve thisCurve=result.get(i);
        if(thisCurve instanceof BezierCurve) {
            res=(BezierCurve)thisCurve;
            break;
        }
    }


    Line seg=new Line(d[first], d[last]);
    int nAcceptableTogether=0;
    int startPoint=-1;
    int splitPointTmp=-1;

    if(Double.isInfinite(seg.getGradient())) {
        for (i = first; i <= last; i++) {
            double dist=Math.abs(d[i].x-d[first].x);
            if(dist<errorOnLine) {
                nAcceptableTogether++;
                if(startPoint==-1) startPoint=i;
            } else {
                if(startPoint!=-1) {
                    double minLineLength=Double.POSITIVE_INFINITY;
                    if(res!=null) {
                        minLineLength=lineSensitivity * res.ctrl2.distance(d[startPoint]);
                    }
                    double thisFromStart=d[startPoint].distance(d[i]);
                    if(thisFromStart >= minLineLength) {
                        splitPointTmp=i;
                        startPoint=-1;
                        break;
                    }
                }
                nAcceptableTogether=0;
                startPoint=-1;
            }
        }
    } else {
        //looking for the max squared error
        for (i = first; i <= last; i++) {
            Point thisPoint=d[i];
            Point2D calculatedP=seg.getByX(thisPoint.getX());
            double dist=thisPoint.distance(calculatedP);
            if(dist<errorOnLine) {
                nAcceptableTogether++;
                if(startPoint==-1) startPoint=i;
            } else {
                if(startPoint!=-1) {
                    double thisFromStart=d[startPoint].distance(thisPoint);
                    double minLineLength=Double.POSITIVE_INFINITY;
                    if(res!=null) {
                        minLineLength=lineSensitivity * res.ctrl2.distance(d[startPoint]);
                    }
                    if(thisFromStart >= minLineLength) {
                        splitPointTmp=i;
                        startPoint=-1;
                        break;
                    }
                }
                nAcceptableTogether=0;
                startPoint=-1;
            }
        }
    }

    if(startPoint!=-1) {
        double minLineLength=Double.POSITIVE_INFINITY;
        if(res!=null) {
            minLineLength=lineSensitivity * res.ctrl2.distance(d[startPoint]);
        }
        if(d[startPoint].distance(d[last]) >= minLineLength) {
            splitPointTmp=startPoint;
            startPoint=-1;
        } else {
            nAcceptableTogether=0;
        }
    }
    outputSplitPoint.set(splitPointTmp);

    if(nAcceptableTogether==(last-first+1)) {
        //This is a line!
        System.out.println("line, length: " + d[first].distance(d[last]));
        result.add(new CurveSegment(d[first], d[last]));
        return;
    }

    /*********************** END of the Line approach, lets try the normal algorithm *******************************************/


    if(splitPointTmp < 0) {
        if(nPts == 2) {
            double dist = d[first].distance(d[last]) / 3.0;  //sqrt((last.x-first.x)^2 + (last.y-first.y)^2) / 3.0   
            bezCurve = new PointE[4];
            bezCurve[0] = new PointE(d[first]);
            bezCurve[3] = new PointE(d[last]);
            bezCurve[1]=new PointE(tHat1).scaleAdd(dist, bezCurve[0]); //V2Add(&bezCurve[0], V2Scale(&tHat1, dist), &bezCurve[1]);
            bezCurve[2]=new PointE(tHat2).scaleAdd(dist, bezCurve[3]); //V2Add(&bezCurve[3], V2Scale(&tHat2, dist), &bezCurve[2]);

            result.add(new BezierCurve(bezCurve[0],bezCurve[1],bezCurve[2],bezCurve[3]));
            return;
        }


        /*  Parameterize points, and attempt to fit curve */
        u = ChordLengthParameterize(d, first, last);
        bezCurve = GenerateBezier(d, first, last, u, tHat1, tHat2);

        /*  Find max deviation of points to fitted curve */
        maxError = ComputeMaxError(d, first, last, bezCurve, u, outputSplitPoint);
        if(maxError < error) {
            result.add(new BezierCurve(bezCurve[0],bezCurve[1],bezCurve[2],bezCurve[3]));
            return;
        }


        /*  If error not too large, try some reparameterization  */
        /*  and iteration */
        if(maxError < iterationError)
        {
            for(i = 0; i < maxIterations; i++) {
                uPrime = Reparameterize(d, first, last, u, bezCurve);
                bezCurve = GenerateBezier(d, first, last, uPrime, tHat1, tHat2);
                maxError = ComputeMaxError(d, first, last, bezCurve, uPrime, outputSplitPoint);
                if(maxError < error) {
                    result.add(new BezierCurve(bezCurve[0],bezCurve[1],bezCurve[2],bezCurve[3]));
                    return;
                }
                u = uPrime;
            }
        }
    }

    /* Fitting failed -- split at max error point and fit recursively */
    tHatCenter = ComputeCenterTangent(d, outputSplitPoint.get());
    FitCubic(d, first, outputSplitPoint.get(), tHat1, tHatCenter, error,result);
    tHatCenter.negate();
    FitCubic(d, outputSplitPoint.get(), last, tHatCenter, tHat2, error,result);
}

//Checked!!
static PointE[] GenerateBezier(Point2D[] d, int first, int last, double[] uPrime, Vector2d tHat1, Vector2d tHat2)
{
    int     i;
    Vector2d[][] A = new Vector2d[MAXPOINTS][2];    /* Precomputed rhs for eqn    */

    int     nPts;           /* Number of pts in sub-curve */
    double[][]  C = new double[2][2];            /* Matrix C     */
    double[]    X = new double[2];          /* Matrix X         */
    double  det_C0_C1,      /* Determinants of matrices */
            det_C0_X,
            det_X_C1;
    double  alpha_l,        /* Alpha values, left and right */
            alpha_r;          
    PointE[] bezCurve = new PointE[4];    /* RETURN bezier curve ctl pts  */
    nPts = last - first + 1;

    /* Compute the A's  */
        for (i = 0; i < nPts; i++) {
            Vector2d v1=new Vector2d(tHat1);
            Vector2d v2=new Vector2d(tHat2);
            v1.scale(B1(uPrime[i]));
            v2.scale(B2(uPrime[i]));
            A[i][0] = v1;
            A[i][1] = v2;
        }

        /* Create the C and X matrices  */
        C[0][0] = 0.0;
        C[0][1] = 0.0;
        C[1][0] = 0.0;
        C[1][1] = 0.0;
        X[0]    = 0.0;
        X[1]    = 0.0;

        for (i = 0; i < nPts; i++) {
            C[0][0] += A[i][0].dot(A[i][0]);    //C[0][0] += V2Dot(&A[i][0], &A[i][0]);
            C[0][1] += A[i][0].dot(A[i][1]);    //C[0][1] += V2Dot(&A[i][0], &A[i][1]);
    /*                  C[1][0] += V2Dot(&A[i][0], &A[i][9]);*/ 
            C[1][0] = C[0][1];  //C[1][0] = C[0][1]
            C[1][1] += A[i][1].dot(A[i][1]);    //C[1][1] += V2Dot(&A[i][1], &A[i][1]);

            Tuple2d scaleLastB2=new Vector2d(PointE.getPoint2d(d[last])); scaleLastB2.scale(B2(uPrime[i])); // V2ScaleIII(d[last], B2(uPrime[i]))
            Tuple2d scaleLastB3=new Vector2d(PointE.getPoint2d(d[last])); scaleLastB3.scale(B3(uPrime[i])); // V2ScaleIII(d[last], B3(uPrime[i]))
            Tuple2d dLastB2B3Sum=new Vector2d(scaleLastB2); dLastB2B3Sum.add(scaleLastB3);  //V2AddII(V2ScaleIII(d[last], B2(uPrime[i])), V2ScaleIII(d[last], B3(uPrime[i]))

            Tuple2d scaleFirstB1=new Vector2d(PointE.getPoint2d(d[first])); scaleFirstB1.scale(B1(uPrime[i]));  //V2ScaleIII(d[first], B1(uPrime[i]))

            Tuple2d sumScaledFirstB1andB2B3=new Vector2d(scaleFirstB1); sumScaledFirstB1andB2B3.add(dLastB2B3Sum);  //V2AddII(V2ScaleIII(d[first], B1(uPrime[i])), V2AddII(V2ScaleIII(d[last], B2(uPrime[i])), V2ScaleIII(d[last], B3(uPrime[i])))

            Tuple2d scaleFirstB0=new Vector2d(PointE.getPoint2d(d[first])); scaleFirstB0.scale(B0(uPrime[i]));      //V2ScaleIII(d[first], B0(uPrime[i])
            Tuple2d sumB0Rest=new Vector2d(scaleFirstB0); sumB0Rest.add(sumScaledFirstB1andB2B3);       //V2AddII(V2ScaleIII(d[first], B0(uPrime[i])), V2AddII( V2ScaleIII(d[first], B1(uPrime[i])), V2AddII(V2ScaleIII(d[last], B2(uPrime[i])), V2ScaleIII(d[last], B3(uPrime[i]))))));

            Vector2d tmp=new Vector2d(PointE.getPoint2d(d[first + i]));
            tmp.sub(sumB0Rest);

            X[0] += A[i][0].dot(tmp);
            X[1] += A[i][1].dot(tmp);
        }

        /* Compute the determinants of C and X  */
        det_C0_C1 = C[0][0] * C[1][1] - C[1][0] * C[0][1];
        det_C0_X  = C[0][0] * X[1]    - C[1][0] * X[0];
        det_X_C1  = X[0]    * C[1][1] - X[1]    * C[0][1];

        /* Finally, derive alpha values */
        alpha_l = (det_C0_C1 == 0) ? 0.0 : det_X_C1 / det_C0_C1;
        alpha_r = (det_C0_C1 == 0) ? 0.0 : det_C0_X / det_C0_C1;

        /* If alpha negative, use the Wu/Barsky heuristic (see text) */
        /* (if alpha is 0, you get coincident control points that lead to
         * divide by zero in any subsequent NewtonRaphsonRootFind() call. */
        double segLength = d[first].distance(d[last]); //(d[first] - d[last]).Length;
        double epsilonRel = epsilon * segLength;
        if (alpha_l < epsilonRel || alpha_r < epsilonRel) {
            /* fall back on standard (probably inaccurate) formula, and subdivide further if needed. */
            double dist = segLength / 3.0;
            bezCurve[0] = new PointE(d[first]);
            bezCurve[3] = new PointE(d[last]);

            Vector2d b1Tmp=new Vector2d(tHat1); b1Tmp.scaleAdd(dist, bezCurve[0].getPoint2d());
            bezCurve[1] = new PointE(b1Tmp); //(tHat1 * dist) + bezCurve[0];
            Vector2d b2Tmp=new Vector2d(tHat2); b2Tmp.scaleAdd(dist, bezCurve[3].getPoint2d());
            bezCurve[2] = new PointE(b2Tmp); //(tHat2 * dist) + bezCurve[3];

            return (bezCurve);
        }

        /*  First and last control points of the Bezier curve are */
        /*  positioned exactly at the first and last data points */
        /*  Control points 1 and 2 are positioned an alpha distance out */
        /*  on the tangent vectors, left and right, respectively */
        bezCurve[0] = new PointE(d[first]);
        bezCurve[3] = new PointE(d[last]);
        Vector2d alphaLTmp=new Vector2d(tHat1); alphaLTmp.scaleAdd(alpha_l, bezCurve[0].getPoint2d());  
        bezCurve[1] = new PointE(alphaLTmp);    //(tHat1 * alpha_l) + bezCurve[0]
        Vector2d alphaRTmp=new Vector2d(tHat2); alphaRTmp.scaleAdd(alpha_r, bezCurve[3].getPoint2d());
        bezCurve[2] = new PointE(alphaRTmp);    //(tHat2 * alpha_r) + bezCurve[3];

        return (bezCurve);
    }

    /*
     *  Reparameterize:
     *  Given set of points and their parameterization, try to find
     *   a better parameterization.
     *
     */
    static double[] Reparameterize(Point2D[] d,int first,int last,double[] u, Point2D[] bezCurve)
    {
        int     nPts = last-first+1;    
        int     i;
        double[]    uPrime = new double[nPts];      /*  New parameter values    */

        for (i = first; i <= last; i++) {
            uPrime[i-first] = NewtonRaphsonRootFind(bezCurve, d[i], u[i-first]);
        }
        return uPrime;
    }



    /*
     *  NewtonRaphsonRootFind :
     *  Use Newton-Raphson iteration to find better root.
     */
    static double NewtonRaphsonRootFind(Point2D[] Q, Point2D P, double u)
    {
        double      numerator, denominator;
        Point2D[]     Q1 = new Point2D[3];  //Q'
        Point2D[]       Q2 = new Point2D[2];  //Q''
        Point2D       Q_u, Q1_u, Q2_u; /*u evaluated at Q, Q', & Q''  */
        double      uPrime;     /*  Improved u          */
        int         i;

        /* Compute Q(u) */
        Q_u = BezierII(3, Q, u);

        /* Generate control vertices for Q' */
        for (i = 0; i <= 2; i++) {
            double qXTmp=(Q[i+1].getX() - Q[i].getX()) * 3.0;   //Q1[i].x = (Q[i+1].x - Q[i].x) * 3.0;
            double qYTmp=(Q[i+1].getY() - Q[i].getY()) * 3.0;   //Q1[i].y = (Q[i+1].y - Q[i].y) * 3.0;
            Q1[i]=new Point2D.Double(qXTmp, qYTmp);
        }

        /* Generate control vertices for Q'' */
        for (i = 0; i <= 1; i++) {
            double qXTmp=(Q1[i+1].getX() - Q1[i].getX()) * 2.0; //Q2[i].x = (Q1[i+1].x - Q1[i].x) * 2.0;
            double qYTmp=(Q1[i+1].getY() - Q1[i].getY()) * 2.0; //Q2[i].y = (Q1[i+1].y - Q1[i].y) * 2.0;
            Q2[i]=new Point2D.Double(qXTmp, qYTmp);
        }

        /* Compute Q'(u) and Q''(u) */
        Q1_u = BezierII(2, Q1, u);
        Q2_u = BezierII(1, Q2, u);

        /* Compute f(u)/f'(u) */
        numerator = (Q_u.getX() - P.getX()) * (Q1_u.getX()) + (Q_u.getY() - P.getY()) * (Q1_u.getY());
        denominator = (Q1_u.getX()) * (Q1_u.getX()) + (Q1_u.getY()) * (Q1_u.getY()) + (Q_u.getX() - P.getX()) * (Q2_u.getX()) + (Q_u.getY() - P.getY()) * (Q2_u.getY());
        if (denominator == 0.0f) return u;

        /* u = u - f(u)/f'(u) */
        uPrime = u - (numerator/denominator);
        return (uPrime);
    }



    /*
     *  Bezier :
     *      Evaluate a Bezier curve at a particular parameter value
     * 
     */
    static Point2D BezierII(int degree, Point2D[] V, double t)
    {
        int     i, j;       
        Point2D   Q;          /* Point on curve at parameter t    */
        Point2D[]     Vtemp;      /* Local copy of control points     */

        /* Copy array   */
        Vtemp = new Point2D[degree+1];
        for (i = 0; i <= degree; i++) {
            Vtemp[i] = new Point2D.Double(V[i].getX(), V[i].getY());
        }

        /* Triangle computation */
        for (i = 1; i <= degree; i++) { 
            for (j = 0; j <= degree-i; j++) {
                double tmpX, tmpY;
                tmpX = (1.0 - t) * Vtemp[j].getX() + t * Vtemp[j+1].getX();
                tmpY = (1.0 - t) * Vtemp[j].getY() + t * Vtemp[j+1].getY();
                Vtemp[j].setLocation(tmpX, tmpY);
            }
        }

        Q = Vtemp[0];
        return Q;
    }


    /*
     *  B0, B1, B2, B3 :
     *  Bezier multipliers
     */
    static double B0(double u)
    {
        double tmp = 1.0 - u;
        return (tmp * tmp * tmp);
    }


    static double B1(double u)
    {
        double tmp = 1.0 - u;
        return (3 * u * (tmp * tmp));
    }

    static double B2(double u)
    {
        double tmp = 1.0 - u;
        return (3 * u * u * tmp);
    }

    static double B3(double u)
    {
        return (u * u * u);
    }


    /*
     * ComputeLeftTangent, ComputeRightTangent, ComputeCenterTangent :
     *Approximate unit tangents at endpoints and "center" of digitized curve
     */
    static Vector2d ComputeLeftTangent(Point[] d, int end)
    {
        Vector2d  tHat1=new Vector2d(PointE.getPoint2d(d[end+1]));
        tHat1.sub(PointE.getPoint2d(d[end]));
        tHat1.normalize();
        return tHat1;
    }

    static Vector2d ComputeRightTangent(Point[] d, int end)
    {
        //tHat2 = V2SubII(d[end-1], d[end]); tHat2 = *V2Normalize(&tHat2);
        Vector2d  tHat2=new Vector2d(PointE.getPoint2d(d[end-1]));
        tHat2.sub(PointE.getPoint2d(d[end]));
        tHat2.normalize();
        return tHat2;
    }

    static Vector2d ComputeCenterTangent(Point[] d ,int center)
    {
        //V1 = V2SubII(d[center-1], d[center]);
        Vector2d  V1=new Vector2d(PointE.getPoint2d(d[center-1]));
        V1.sub(new PointE(d[center]).getPoint2d());

        //V2 = V2SubII(d[center], d[center+1]);
        Vector2d  V2=new Vector2d(PointE.getPoint2d(d[center]));
        V2.sub(PointE.getPoint2d(d[center+1]));

        //tHatCenter.x = (V1.x + V2.x)/2.0;
        //tHatCenter.y = (V1.y + V2.y)/2.0;
        //tHatCenter = *V2Normalize(&tHatCenter);
        Vector2d tHatCenter=new Vector2d((V1.x + V2.x)/2.0, (V1.y + V2.y)/2.0);
        tHatCenter.normalize();
        return tHatCenter;
    }

    /*
     *  ChordLengthParameterize :
     *  Assign parameter values to digitized points 
     *  using relative distances between points.
     */
    static double[] ChordLengthParameterize(Point[] d,int first,int last)
    {
        int     i;  
        double[]    u = new double[last-first+1];           /*  Parameterization        */

        u[0] = 0.0;
        for (i = first+1; i <= last; i++) {
            u[i-first] = u[i-first-1] + d[i-1].distance(d[i]);
        }

        for (i = first + 1; i <= last; i++) {
            u[i-first] = u[i-first] / u[last-first];
        }

        return u;
    }




    /*
     *  ComputeMaxError :
     *  Find the maximum squared distance of digitized points
     *  to fitted curve.
    */
    static double ComputeMaxError(Point2D[] d, int first, int last, Point2D[] bezCurve, double[] u, AtomicInteger splitPoint)
    {
        int     i;
        double  maxDist;        /*  Maximum error       */
        double  dist;       /*  Current error       */
        Point2D   P;          /*  Point on curve      */
        Vector2d  v;          /*  Vector from point to curve  */

        int tmpSplitPoint=(last - first + 1)/2;
        maxDist = 0.0;

        for (i = first + 1; i < last; i++) {                
            P = BezierII(3, bezCurve, u[i-first]);

            v = new Vector2d(P.getX() - d[i].getX(), P.getY() - d[i].getY());   //P - d[i];
            dist = v.lengthSquared();
            if (dist >= maxDist) {
                maxDist = dist;
                tmpSplitPoint=i;
            }
        }
        splitPoint.set(tmpSplitPoint);
        return maxDist;
    }







    /**
     * This is kind of a bridge between javax.vecmath and java.util.Point2D
     * @author Ruben
     * @since 1.24
     */
    public static class PointE extends Point2D.Double {
        private static final long serialVersionUID = -1482403817370130793L;
        public PointE(Tuple2d tup) {
            super(tup.x, tup.y);
        }
        public PointE(Point2D p) {
            super(p.getX(), p.getY());
        }
        public PointE(double x, double y) {
            super(x, y);
        }
        public PointE scale(double dist) {
            return new PointE(getX()*dist, getY()*dist);
        }
        public PointE scaleAdd(double dist, Point2D sum) {
            return new PointE(getX()*dist + sum.getX(), getY()*dist + sum.getY());
        }
        public PointE substract(Point2D p) {
            return new PointE(getX() - p.getX(), getY() - p.getY());
        }
        public Point2d getPoint2d() {
            return getPoint2d(this);
        }
        public static Point2d getPoint2d(Point2D p) {
            return new Point2d(p.getX(), p.getY());
        }
    }

这是后者工作的图像,白色是线条,红色是贝塞尔曲线:

在此处输入图像描述

使用这种方法,我们使用的控制点更少且更准确。
线条创建的灵敏度可以通过 lineSensitivity 属性进行调整。如果您根本不想使用线条,只需将其设置为无限即可。

我相信这可以改进。请随意贡献:)

该算法没有做任何减少,并且由于我的帖子中解释的第一个,我们必须运行一个。 附加 FitCurves 更有效(要存储的点更少,渲染速度更快)

import java.awt.Point;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.List;


public class DouglasPeuckerReduction {

    public static List<Point> reduce(Point[] points, double tolerance)
    {
        if (points == null || points.length < 3) return Arrays.asList(points);

        int firstPoint = 0;
        int lastPoint = points.length - 1;

        SortedList<Integer> pointIndexsToKeep;
        try {
            pointIndexsToKeep = new SortedList<Integer>(LinkedList.class);
        } catch (Throwable t) {
            t.printStackTrace(System.out);
            ErrorReport.process(t);
            return null;
        }

        //Add the first and last index to the keepers
        pointIndexsToKeep.add(firstPoint);
        pointIndexsToKeep.add(lastPoint);

        //The first and the last point cannot be the same
        while (points[firstPoint].equals(points[lastPoint])) {
            lastPoint--;
        }

        reduce(points, firstPoint, lastPoint, tolerance, pointIndexsToKeep);

        List<Point> returnPoints = new ArrayList<Point>(pointIndexsToKeep.size());

        for (int pIndex : pointIndexsToKeep) {
             returnPoints.add(points[pIndex]);
        }

        return returnPoints;
    }


    private static void reduce(Point[] points, int firstPoint, int lastPoint, double tolerance, List<Integer> pointIndexsToKeep) {
        double maxDistance = 0;
        int indexFarthest = 0;

        Line tmpLine=new Line(points[firstPoint], points[lastPoint]);

        for (int index = firstPoint; index < lastPoint; index++) {
            double distance = tmpLine.getDistanceFrom(points[index]);
            if (distance > maxDistance) {
                maxDistance = distance;
                indexFarthest = index;
            }
        }

        if (maxDistance > tolerance && indexFarthest != 0) {
            //Add the largest point that exceeds the tolerance
            pointIndexsToKeep.add(indexFarthest);

            reduce(points, firstPoint, indexFarthest, tolerance, pointIndexsToKeep);
            reduce(points, indexFarthest, lastPoint, tolerance, pointIndexsToKeep);
        }
    }

}

这是一个 DouglasPeuckerReduction 实现,对我来说,在某些情况下,它比我在这里使用我自己的 SortedList 和 Line 实现的 。你必须自己做,抱歉。

Well, the job of Kris was very useful.

I realized that the problem he pointed out about the algorithm terminating earlier because of a miscalculated error ending on 0, is due to the fact that one point is repeated and the computed tangent is infinite.

I have done a translation to Java, based on the code of Kris, it works fine I believe:

EDIT:

I still working and trying to get a better behavior on the algorithm. I realized that on very spiky angles, the Bezier curves simply don't behave good. So I tried to combine Bezier curves with Lines and this is the result:

import java.awt.Point;
import java.awt.Shape;
import java.awt.geom.CubicCurve2D;
import java.awt.geom.Line2D;
import java.awt.geom.Point2D;
import java.util.LinkedList;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;

import javax.vecmath.Point2d;
import javax.vecmath.Tuple2d;
import javax.vecmath.Vector2d;



/*
An Algorithm for Automatically Fitting Digitized Curves
by Philip J. Schneider
from "Graphics Gems", Academic Press, 1990
*/
public class FitCurves
{
/*  Fit the Bezier curves */

private final static int MAXPOINTS = 10000;
private final static double epsilon = 1.0e-6;

/**
 * Rubén:
 * This is the sensitivity. When it is 1, it will create a line if it is at least as long as the
 * distance from the previous control point.
 * When it is greater, it will create less lines, and when it is lower, more lines.
 * This is based on the previous control point since I believe it is a good indicator of the curvature
 * where it is coming from, and we don't want long and second derived constant curves to be modeled with
 * many lines.
 */
private static final double lineSensitivity=0.75;




public interface ResultCurve {
    public Point2D getStart();
    public Point2D getEnd();
    public Shape getShape();
}

public static class BezierCurve implements ResultCurve {
    public Point start;
    public Point end;
    public Point ctrl1;
    public Point ctrl2;
    public BezierCurve(Point2D start, Point2D ctrl1, Point2D ctrl2, Point2D end) {
        this.start=new Point((int)Math.round(start.getX()), (int)Math.round(start.getY()));
        this.end=new Point((int)Math.round(end.getX()), (int)Math.round(end.getY()));
        this.ctrl1=new Point((int)Math.round(ctrl1.getX()), (int)Math.round(ctrl1.getY()));
        this.ctrl2=new Point((int)Math.round(ctrl2.getX()), (int)Math.round(ctrl2.getY()));
        if(this.ctrl1.x<=1 || this.ctrl1.y<=1) {
            throw new IllegalStateException("ctrl1 invalid");
        }
        if(this.ctrl2.x<=1 || this.ctrl2.y<=1) {
            throw new IllegalStateException("ctrl2 invalid");
        }
    }
    public Shape getShape() {
        return new CubicCurve2D.Float(start.x, start.y, ctrl1.x, ctrl1.y, ctrl2.x, ctrl2.y, end.x, end.y);
    }
    public Point getStart() {
        return start;
    }
    public Point getEnd() {
        return end;
    }
}

public static class CurveSegment implements ResultCurve {
    Point2D start;
    Point2D end;
    public CurveSegment(Point2D startP, Point2D endP) {
        this.start=startP;
        this.end=endP;
    }
    public Shape getShape() {
        return new Line2D.Float(start, end);
    }
    public Point2D getStart() {
        return start;
    }
    public Point2D getEnd() {
        return end;
    }
}


public static List<ResultCurve> FitCurve(double[][] points, double error) {
    Point[] allPoints=new Point[points.length]; 
    for(int i=0; i < points.length; i++) {
        allPoints[i]=new Point((int) Math.round(points[i][0]), (int) Math.round(points[i][1]));
    }
    return FitCurve(allPoints, error);
}

public static List<ResultCurve> FitCurve(Point[] d, double error)
{
    Vector2d tHat1, tHat2;    /*  Unit tangent vectors at endpoints */

    int first=0;
    int last=d.length-1;
    tHat1 = ComputeLeftTangent(d, first);
    tHat2 = ComputeRightTangent(d, last);
    List<ResultCurve> result = new LinkedList<ResultCurve>();
    FitCubic(d, first, last, tHat1, tHat2, error, result);

    return result;
}


private static void FitCubic(Point[] d, int first, int last, Vector2d tHat1, Vector2d tHat2, double error, List<ResultCurve> result)
{
    PointE[] bezCurve; /*Control points of fitted Bezier curve*/
    double[] u;     /*  Parameter values for point  */
    double[] uPrime;    /*  Improved parameter values */
    double maxError;    /*  Maximum fitting error    */
    int nPts;       /*  Number of points in subset  */
    double iterationError; /*Error below which you try iterating  */
    int maxIterations = 4; /*  Max times to try iterating  */
    Vector2d tHatCenter;      /* Unit tangent vector at splitPoint */
    int i;
    double errorOnLine=error;

    iterationError = error * error;
    nPts = last - first + 1;

    AtomicInteger outputSplitPoint=new AtomicInteger();

    /**
     * Rubén: Here we try to fit the form with a line, and we mark the split point if we find any line with a minimum length
     */
    /*
     * the minimum distance for a length (so we don't create a very small line, when it could be slightly modeled with the previous Bezier,
     * will be proportional to the distance of the previous control point of the last Bezier.
     */
    BezierCurve res=null;
    for(i=result.size()-1; i >0; i--) {
        ResultCurve thisCurve=result.get(i);
        if(thisCurve instanceof BezierCurve) {
            res=(BezierCurve)thisCurve;
            break;
        }
    }


    Line seg=new Line(d[first], d[last]);
    int nAcceptableTogether=0;
    int startPoint=-1;
    int splitPointTmp=-1;

    if(Double.isInfinite(seg.getGradient())) {
        for (i = first; i <= last; i++) {
            double dist=Math.abs(d[i].x-d[first].x);
            if(dist<errorOnLine) {
                nAcceptableTogether++;
                if(startPoint==-1) startPoint=i;
            } else {
                if(startPoint!=-1) {
                    double minLineLength=Double.POSITIVE_INFINITY;
                    if(res!=null) {
                        minLineLength=lineSensitivity * res.ctrl2.distance(d[startPoint]);
                    }
                    double thisFromStart=d[startPoint].distance(d[i]);
                    if(thisFromStart >= minLineLength) {
                        splitPointTmp=i;
                        startPoint=-1;
                        break;
                    }
                }
                nAcceptableTogether=0;
                startPoint=-1;
            }
        }
    } else {
        //looking for the max squared error
        for (i = first; i <= last; i++) {
            Point thisPoint=d[i];
            Point2D calculatedP=seg.getByX(thisPoint.getX());
            double dist=thisPoint.distance(calculatedP);
            if(dist<errorOnLine) {
                nAcceptableTogether++;
                if(startPoint==-1) startPoint=i;
            } else {
                if(startPoint!=-1) {
                    double thisFromStart=d[startPoint].distance(thisPoint);
                    double minLineLength=Double.POSITIVE_INFINITY;
                    if(res!=null) {
                        minLineLength=lineSensitivity * res.ctrl2.distance(d[startPoint]);
                    }
                    if(thisFromStart >= minLineLength) {
                        splitPointTmp=i;
                        startPoint=-1;
                        break;
                    }
                }
                nAcceptableTogether=0;
                startPoint=-1;
            }
        }
    }

    if(startPoint!=-1) {
        double minLineLength=Double.POSITIVE_INFINITY;
        if(res!=null) {
            minLineLength=lineSensitivity * res.ctrl2.distance(d[startPoint]);
        }
        if(d[startPoint].distance(d[last]) >= minLineLength) {
            splitPointTmp=startPoint;
            startPoint=-1;
        } else {
            nAcceptableTogether=0;
        }
    }
    outputSplitPoint.set(splitPointTmp);

    if(nAcceptableTogether==(last-first+1)) {
        //This is a line!
        System.out.println("line, length: " + d[first].distance(d[last]));
        result.add(new CurveSegment(d[first], d[last]));
        return;
    }

    /*********************** END of the Line approach, lets try the normal algorithm *******************************************/


    if(splitPointTmp < 0) {
        if(nPts == 2) {
            double dist = d[first].distance(d[last]) / 3.0;  //sqrt((last.x-first.x)^2 + (last.y-first.y)^2) / 3.0   
            bezCurve = new PointE[4];
            bezCurve[0] = new PointE(d[first]);
            bezCurve[3] = new PointE(d[last]);
            bezCurve[1]=new PointE(tHat1).scaleAdd(dist, bezCurve[0]); //V2Add(&bezCurve[0], V2Scale(&tHat1, dist), &bezCurve[1]);
            bezCurve[2]=new PointE(tHat2).scaleAdd(dist, bezCurve[3]); //V2Add(&bezCurve[3], V2Scale(&tHat2, dist), &bezCurve[2]);

            result.add(new BezierCurve(bezCurve[0],bezCurve[1],bezCurve[2],bezCurve[3]));
            return;
        }


        /*  Parameterize points, and attempt to fit curve */
        u = ChordLengthParameterize(d, first, last);
        bezCurve = GenerateBezier(d, first, last, u, tHat1, tHat2);

        /*  Find max deviation of points to fitted curve */
        maxError = ComputeMaxError(d, first, last, bezCurve, u, outputSplitPoint);
        if(maxError < error) {
            result.add(new BezierCurve(bezCurve[0],bezCurve[1],bezCurve[2],bezCurve[3]));
            return;
        }


        /*  If error not too large, try some reparameterization  */
        /*  and iteration */
        if(maxError < iterationError)
        {
            for(i = 0; i < maxIterations; i++) {
                uPrime = Reparameterize(d, first, last, u, bezCurve);
                bezCurve = GenerateBezier(d, first, last, uPrime, tHat1, tHat2);
                maxError = ComputeMaxError(d, first, last, bezCurve, uPrime, outputSplitPoint);
                if(maxError < error) {
                    result.add(new BezierCurve(bezCurve[0],bezCurve[1],bezCurve[2],bezCurve[3]));
                    return;
                }
                u = uPrime;
            }
        }
    }

    /* Fitting failed -- split at max error point and fit recursively */
    tHatCenter = ComputeCenterTangent(d, outputSplitPoint.get());
    FitCubic(d, first, outputSplitPoint.get(), tHat1, tHatCenter, error,result);
    tHatCenter.negate();
    FitCubic(d, outputSplitPoint.get(), last, tHatCenter, tHat2, error,result);
}

//Checked!!
static PointE[] GenerateBezier(Point2D[] d, int first, int last, double[] uPrime, Vector2d tHat1, Vector2d tHat2)
{
    int     i;
    Vector2d[][] A = new Vector2d[MAXPOINTS][2];    /* Precomputed rhs for eqn    */

    int     nPts;           /* Number of pts in sub-curve */
    double[][]  C = new double[2][2];            /* Matrix C     */
    double[]    X = new double[2];          /* Matrix X         */
    double  det_C0_C1,      /* Determinants of matrices */
            det_C0_X,
            det_X_C1;
    double  alpha_l,        /* Alpha values, left and right */
            alpha_r;          
    PointE[] bezCurve = new PointE[4];    /* RETURN bezier curve ctl pts  */
    nPts = last - first + 1;

    /* Compute the A's  */
        for (i = 0; i < nPts; i++) {
            Vector2d v1=new Vector2d(tHat1);
            Vector2d v2=new Vector2d(tHat2);
            v1.scale(B1(uPrime[i]));
            v2.scale(B2(uPrime[i]));
            A[i][0] = v1;
            A[i][1] = v2;
        }

        /* Create the C and X matrices  */
        C[0][0] = 0.0;
        C[0][1] = 0.0;
        C[1][0] = 0.0;
        C[1][1] = 0.0;
        X[0]    = 0.0;
        X[1]    = 0.0;

        for (i = 0; i < nPts; i++) {
            C[0][0] += A[i][0].dot(A[i][0]);    //C[0][0] += V2Dot(&A[i][0], &A[i][0]);
            C[0][1] += A[i][0].dot(A[i][1]);    //C[0][1] += V2Dot(&A[i][0], &A[i][1]);
    /*                  C[1][0] += V2Dot(&A[i][0], &A[i][9]);*/ 
            C[1][0] = C[0][1];  //C[1][0] = C[0][1]
            C[1][1] += A[i][1].dot(A[i][1]);    //C[1][1] += V2Dot(&A[i][1], &A[i][1]);

            Tuple2d scaleLastB2=new Vector2d(PointE.getPoint2d(d[last])); scaleLastB2.scale(B2(uPrime[i])); // V2ScaleIII(d[last], B2(uPrime[i]))
            Tuple2d scaleLastB3=new Vector2d(PointE.getPoint2d(d[last])); scaleLastB3.scale(B3(uPrime[i])); // V2ScaleIII(d[last], B3(uPrime[i]))
            Tuple2d dLastB2B3Sum=new Vector2d(scaleLastB2); dLastB2B3Sum.add(scaleLastB3);  //V2AddII(V2ScaleIII(d[last], B2(uPrime[i])), V2ScaleIII(d[last], B3(uPrime[i]))

            Tuple2d scaleFirstB1=new Vector2d(PointE.getPoint2d(d[first])); scaleFirstB1.scale(B1(uPrime[i]));  //V2ScaleIII(d[first], B1(uPrime[i]))

            Tuple2d sumScaledFirstB1andB2B3=new Vector2d(scaleFirstB1); sumScaledFirstB1andB2B3.add(dLastB2B3Sum);  //V2AddII(V2ScaleIII(d[first], B1(uPrime[i])), V2AddII(V2ScaleIII(d[last], B2(uPrime[i])), V2ScaleIII(d[last], B3(uPrime[i])))

            Tuple2d scaleFirstB0=new Vector2d(PointE.getPoint2d(d[first])); scaleFirstB0.scale(B0(uPrime[i]));      //V2ScaleIII(d[first], B0(uPrime[i])
            Tuple2d sumB0Rest=new Vector2d(scaleFirstB0); sumB0Rest.add(sumScaledFirstB1andB2B3);       //V2AddII(V2ScaleIII(d[first], B0(uPrime[i])), V2AddII( V2ScaleIII(d[first], B1(uPrime[i])), V2AddII(V2ScaleIII(d[last], B2(uPrime[i])), V2ScaleIII(d[last], B3(uPrime[i]))))));

            Vector2d tmp=new Vector2d(PointE.getPoint2d(d[first + i]));
            tmp.sub(sumB0Rest);

            X[0] += A[i][0].dot(tmp);
            X[1] += A[i][1].dot(tmp);
        }

        /* Compute the determinants of C and X  */
        det_C0_C1 = C[0][0] * C[1][1] - C[1][0] * C[0][1];
        det_C0_X  = C[0][0] * X[1]    - C[1][0] * X[0];
        det_X_C1  = X[0]    * C[1][1] - X[1]    * C[0][1];

        /* Finally, derive alpha values */
        alpha_l = (det_C0_C1 == 0) ? 0.0 : det_X_C1 / det_C0_C1;
        alpha_r = (det_C0_C1 == 0) ? 0.0 : det_C0_X / det_C0_C1;

        /* If alpha negative, use the Wu/Barsky heuristic (see text) */
        /* (if alpha is 0, you get coincident control points that lead to
         * divide by zero in any subsequent NewtonRaphsonRootFind() call. */
        double segLength = d[first].distance(d[last]); //(d[first] - d[last]).Length;
        double epsilonRel = epsilon * segLength;
        if (alpha_l < epsilonRel || alpha_r < epsilonRel) {
            /* fall back on standard (probably inaccurate) formula, and subdivide further if needed. */
            double dist = segLength / 3.0;
            bezCurve[0] = new PointE(d[first]);
            bezCurve[3] = new PointE(d[last]);

            Vector2d b1Tmp=new Vector2d(tHat1); b1Tmp.scaleAdd(dist, bezCurve[0].getPoint2d());
            bezCurve[1] = new PointE(b1Tmp); //(tHat1 * dist) + bezCurve[0];
            Vector2d b2Tmp=new Vector2d(tHat2); b2Tmp.scaleAdd(dist, bezCurve[3].getPoint2d());
            bezCurve[2] = new PointE(b2Tmp); //(tHat2 * dist) + bezCurve[3];

            return (bezCurve);
        }

        /*  First and last control points of the Bezier curve are */
        /*  positioned exactly at the first and last data points */
        /*  Control points 1 and 2 are positioned an alpha distance out */
        /*  on the tangent vectors, left and right, respectively */
        bezCurve[0] = new PointE(d[first]);
        bezCurve[3] = new PointE(d[last]);
        Vector2d alphaLTmp=new Vector2d(tHat1); alphaLTmp.scaleAdd(alpha_l, bezCurve[0].getPoint2d());  
        bezCurve[1] = new PointE(alphaLTmp);    //(tHat1 * alpha_l) + bezCurve[0]
        Vector2d alphaRTmp=new Vector2d(tHat2); alphaRTmp.scaleAdd(alpha_r, bezCurve[3].getPoint2d());
        bezCurve[2] = new PointE(alphaRTmp);    //(tHat2 * alpha_r) + bezCurve[3];

        return (bezCurve);
    }

    /*
     *  Reparameterize:
     *  Given set of points and their parameterization, try to find
     *   a better parameterization.
     *
     */
    static double[] Reparameterize(Point2D[] d,int first,int last,double[] u, Point2D[] bezCurve)
    {
        int     nPts = last-first+1;    
        int     i;
        double[]    uPrime = new double[nPts];      /*  New parameter values    */

        for (i = first; i <= last; i++) {
            uPrime[i-first] = NewtonRaphsonRootFind(bezCurve, d[i], u[i-first]);
        }
        return uPrime;
    }



    /*
     *  NewtonRaphsonRootFind :
     *  Use Newton-Raphson iteration to find better root.
     */
    static double NewtonRaphsonRootFind(Point2D[] Q, Point2D P, double u)
    {
        double      numerator, denominator;
        Point2D[]     Q1 = new Point2D[3];  //Q'
        Point2D[]       Q2 = new Point2D[2];  //Q''
        Point2D       Q_u, Q1_u, Q2_u; /*u evaluated at Q, Q', & Q''  */
        double      uPrime;     /*  Improved u          */
        int         i;

        /* Compute Q(u) */
        Q_u = BezierII(3, Q, u);

        /* Generate control vertices for Q' */
        for (i = 0; i <= 2; i++) {
            double qXTmp=(Q[i+1].getX() - Q[i].getX()) * 3.0;   //Q1[i].x = (Q[i+1].x - Q[i].x) * 3.0;
            double qYTmp=(Q[i+1].getY() - Q[i].getY()) * 3.0;   //Q1[i].y = (Q[i+1].y - Q[i].y) * 3.0;
            Q1[i]=new Point2D.Double(qXTmp, qYTmp);
        }

        /* Generate control vertices for Q'' */
        for (i = 0; i <= 1; i++) {
            double qXTmp=(Q1[i+1].getX() - Q1[i].getX()) * 2.0; //Q2[i].x = (Q1[i+1].x - Q1[i].x) * 2.0;
            double qYTmp=(Q1[i+1].getY() - Q1[i].getY()) * 2.0; //Q2[i].y = (Q1[i+1].y - Q1[i].y) * 2.0;
            Q2[i]=new Point2D.Double(qXTmp, qYTmp);
        }

        /* Compute Q'(u) and Q''(u) */
        Q1_u = BezierII(2, Q1, u);
        Q2_u = BezierII(1, Q2, u);

        /* Compute f(u)/f'(u) */
        numerator = (Q_u.getX() - P.getX()) * (Q1_u.getX()) + (Q_u.getY() - P.getY()) * (Q1_u.getY());
        denominator = (Q1_u.getX()) * (Q1_u.getX()) + (Q1_u.getY()) * (Q1_u.getY()) + (Q_u.getX() - P.getX()) * (Q2_u.getX()) + (Q_u.getY() - P.getY()) * (Q2_u.getY());
        if (denominator == 0.0f) return u;

        /* u = u - f(u)/f'(u) */
        uPrime = u - (numerator/denominator);
        return (uPrime);
    }



    /*
     *  Bezier :
     *      Evaluate a Bezier curve at a particular parameter value
     * 
     */
    static Point2D BezierII(int degree, Point2D[] V, double t)
    {
        int     i, j;       
        Point2D   Q;          /* Point on curve at parameter t    */
        Point2D[]     Vtemp;      /* Local copy of control points     */

        /* Copy array   */
        Vtemp = new Point2D[degree+1];
        for (i = 0; i <= degree; i++) {
            Vtemp[i] = new Point2D.Double(V[i].getX(), V[i].getY());
        }

        /* Triangle computation */
        for (i = 1; i <= degree; i++) { 
            for (j = 0; j <= degree-i; j++) {
                double tmpX, tmpY;
                tmpX = (1.0 - t) * Vtemp[j].getX() + t * Vtemp[j+1].getX();
                tmpY = (1.0 - t) * Vtemp[j].getY() + t * Vtemp[j+1].getY();
                Vtemp[j].setLocation(tmpX, tmpY);
            }
        }

        Q = Vtemp[0];
        return Q;
    }


    /*
     *  B0, B1, B2, B3 :
     *  Bezier multipliers
     */
    static double B0(double u)
    {
        double tmp = 1.0 - u;
        return (tmp * tmp * tmp);
    }


    static double B1(double u)
    {
        double tmp = 1.0 - u;
        return (3 * u * (tmp * tmp));
    }

    static double B2(double u)
    {
        double tmp = 1.0 - u;
        return (3 * u * u * tmp);
    }

    static double B3(double u)
    {
        return (u * u * u);
    }


    /*
     * ComputeLeftTangent, ComputeRightTangent, ComputeCenterTangent :
     *Approximate unit tangents at endpoints and "center" of digitized curve
     */
    static Vector2d ComputeLeftTangent(Point[] d, int end)
    {
        Vector2d  tHat1=new Vector2d(PointE.getPoint2d(d[end+1]));
        tHat1.sub(PointE.getPoint2d(d[end]));
        tHat1.normalize();
        return tHat1;
    }

    static Vector2d ComputeRightTangent(Point[] d, int end)
    {
        //tHat2 = V2SubII(d[end-1], d[end]); tHat2 = *V2Normalize(&tHat2);
        Vector2d  tHat2=new Vector2d(PointE.getPoint2d(d[end-1]));
        tHat2.sub(PointE.getPoint2d(d[end]));
        tHat2.normalize();
        return tHat2;
    }

    static Vector2d ComputeCenterTangent(Point[] d ,int center)
    {
        //V1 = V2SubII(d[center-1], d[center]);
        Vector2d  V1=new Vector2d(PointE.getPoint2d(d[center-1]));
        V1.sub(new PointE(d[center]).getPoint2d());

        //V2 = V2SubII(d[center], d[center+1]);
        Vector2d  V2=new Vector2d(PointE.getPoint2d(d[center]));
        V2.sub(PointE.getPoint2d(d[center+1]));

        //tHatCenter.x = (V1.x + V2.x)/2.0;
        //tHatCenter.y = (V1.y + V2.y)/2.0;
        //tHatCenter = *V2Normalize(&tHatCenter);
        Vector2d tHatCenter=new Vector2d((V1.x + V2.x)/2.0, (V1.y + V2.y)/2.0);
        tHatCenter.normalize();
        return tHatCenter;
    }

    /*
     *  ChordLengthParameterize :
     *  Assign parameter values to digitized points 
     *  using relative distances between points.
     */
    static double[] ChordLengthParameterize(Point[] d,int first,int last)
    {
        int     i;  
        double[]    u = new double[last-first+1];           /*  Parameterization        */

        u[0] = 0.0;
        for (i = first+1; i <= last; i++) {
            u[i-first] = u[i-first-1] + d[i-1].distance(d[i]);
        }

        for (i = first + 1; i <= last; i++) {
            u[i-first] = u[i-first] / u[last-first];
        }

        return u;
    }




    /*
     *  ComputeMaxError :
     *  Find the maximum squared distance of digitized points
     *  to fitted curve.
    */
    static double ComputeMaxError(Point2D[] d, int first, int last, Point2D[] bezCurve, double[] u, AtomicInteger splitPoint)
    {
        int     i;
        double  maxDist;        /*  Maximum error       */
        double  dist;       /*  Current error       */
        Point2D   P;          /*  Point on curve      */
        Vector2d  v;          /*  Vector from point to curve  */

        int tmpSplitPoint=(last - first + 1)/2;
        maxDist = 0.0;

        for (i = first + 1; i < last; i++) {                
            P = BezierII(3, bezCurve, u[i-first]);

            v = new Vector2d(P.getX() - d[i].getX(), P.getY() - d[i].getY());   //P - d[i];
            dist = v.lengthSquared();
            if (dist >= maxDist) {
                maxDist = dist;
                tmpSplitPoint=i;
            }
        }
        splitPoint.set(tmpSplitPoint);
        return maxDist;
    }







    /**
     * This is kind of a bridge between javax.vecmath and java.util.Point2D
     * @author Ruben
     * @since 1.24
     */
    public static class PointE extends Point2D.Double {
        private static final long serialVersionUID = -1482403817370130793L;
        public PointE(Tuple2d tup) {
            super(tup.x, tup.y);
        }
        public PointE(Point2D p) {
            super(p.getX(), p.getY());
        }
        public PointE(double x, double y) {
            super(x, y);
        }
        public PointE scale(double dist) {
            return new PointE(getX()*dist, getY()*dist);
        }
        public PointE scaleAdd(double dist, Point2D sum) {
            return new PointE(getX()*dist + sum.getX(), getY()*dist + sum.getY());
        }
        public PointE substract(Point2D p) {
            return new PointE(getX() - p.getX(), getY() - p.getY());
        }
        public Point2d getPoint2d() {
            return getPoint2d(this);
        }
        public static Point2d getPoint2d(Point2D p) {
            return new Point2d(p.getX(), p.getY());
        }
    }

Here an image of the latter working, white are lines, and red are Bezier:

enter image description here

Using this approach we use less control points and more accurate.
The sensitivity for the lines creation can be adjusted through the lineSensitivity attribute. If you don't want lines to be used at all just set it to infinite.

I'm sure this can be improved. Feel free to contribute :)

The algorithm is not doing any reduction, and because of the first explained in my post we have to run one. Here is a DouglasPeuckerReduction implementation, which for me works in some cases even more efficiently (less points to store and faster to render) than an additional FitCurves

import java.awt.Point;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.List;


public class DouglasPeuckerReduction {

    public static List<Point> reduce(Point[] points, double tolerance)
    {
        if (points == null || points.length < 3) return Arrays.asList(points);

        int firstPoint = 0;
        int lastPoint = points.length - 1;

        SortedList<Integer> pointIndexsToKeep;
        try {
            pointIndexsToKeep = new SortedList<Integer>(LinkedList.class);
        } catch (Throwable t) {
            t.printStackTrace(System.out);
            ErrorReport.process(t);
            return null;
        }

        //Add the first and last index to the keepers
        pointIndexsToKeep.add(firstPoint);
        pointIndexsToKeep.add(lastPoint);

        //The first and the last point cannot be the same
        while (points[firstPoint].equals(points[lastPoint])) {
            lastPoint--;
        }

        reduce(points, firstPoint, lastPoint, tolerance, pointIndexsToKeep);

        List<Point> returnPoints = new ArrayList<Point>(pointIndexsToKeep.size());

        for (int pIndex : pointIndexsToKeep) {
             returnPoints.add(points[pIndex]);
        }

        return returnPoints;
    }


    private static void reduce(Point[] points, int firstPoint, int lastPoint, double tolerance, List<Integer> pointIndexsToKeep) {
        double maxDistance = 0;
        int indexFarthest = 0;

        Line tmpLine=new Line(points[firstPoint], points[lastPoint]);

        for (int index = firstPoint; index < lastPoint; index++) {
            double distance = tmpLine.getDistanceFrom(points[index]);
            if (distance > maxDistance) {
                maxDistance = distance;
                indexFarthest = index;
            }
        }

        if (maxDistance > tolerance && indexFarthest != 0) {
            //Add the largest point that exceeds the tolerance
            pointIndexsToKeep.add(indexFarthest);

            reduce(points, firstPoint, indexFarthest, tolerance, pointIndexsToKeep);
            reduce(points, indexFarthest, lastPoint, tolerance, pointIndexsToKeep);
        }
    }

}

I am using here my own implementation of a SortedList, and of a Line. You will have to make it yourself, sorry.

软的没边 2024-11-05 01:30:14

我还没有测试过它,但想到的一种方法是在某个时间间隔内采样值并创建一个样条线来连接这些点。

例如,假设曲线的 x 值从 0 开始,到 10 结束。因此,您在 x=1,2,3,4,5,6,7,8,9,10 处采样 y 值并创建样条线从点 (0, y(0)), (1,y(1)), ... (10, y(10))

可能会出现诸如用户意外绘制尖峰之类的问题,但它可能是值得一试

I haven't tested it, but one approach that comes to mind would be sampling values in some interval and creating a spline to connect the dots.

For example, say the x value of your curve starts at 0 and ends at 10. So you sample the y values at x=1,2,3,4,5,6,7,8,9,10 and create a spline from the points (0, y(0)), (1,y(1)), ... (10, y(10))

It would probably have problems such as accidental spikes drawn by the user, but it may be worth a shot

吃→可爱长大的 2024-11-05 01:30:14

对于 Kris 答案的 Silverlight 用户来说,Point 是有问题的,而 Vector 并不存在。这是支持以下代码的最小 Vector 类:

public class Vector
{
   public double X { get; set; }
   public double Y { get; set; }
   public Vector(double x=0, double y=0)
   {
      X = x;
      Y = y;
   }

   public static implicit operator Vector(Point b)
   {
      return new Vector(b.X, b.Y);
   }

   public static Point operator *(Vector left, double right)
   {
      return new Point(left.X * right, left.Y * right);
   }
   public static Vector operator -(Vector left, Point right)
   {
      return new Vector(left.X - right.X, left.Y - right.Y);
   }

   internal void Negate()
   {
      X = -X;
      Y = -Y;
   }

   internal void Normalize()
   {
      double factor = 1.0 / Math.Sqrt(LengthSquared);
      X *= factor;
      Y *= factor;
   }

   public double LengthSquared { get { return X * X + Y * Y; } }
}

还必须解决长度和 +、- 运算符的使用问题。我选择只向 FitCurves 类添加函数,并在编译器抱怨的地方重写它们的用法。

  public static double Length(Point a, Point b)
  {
     double x = a.X-b.X;
     double y = a.Y-b.Y;
     return Math.Sqrt(x*x+y*y);
  }

  public static Point Add(Point a, Point b)
  {
     return new Point(a.X + b.X, a.Y + b.Y);
  }

  public static Point Subtract(Point a, Point b)
  {
     return new Point(a.X - b.X, a.Y - b.Y);
  }

For Silverlight users of Kris' answer, Point is hobbled and Vector doesn't exist. This is a minimal Vector class that supports the code:

public class Vector
{
   public double X { get; set; }
   public double Y { get; set; }
   public Vector(double x=0, double y=0)
   {
      X = x;
      Y = y;
   }

   public static implicit operator Vector(Point b)
   {
      return new Vector(b.X, b.Y);
   }

   public static Point operator *(Vector left, double right)
   {
      return new Point(left.X * right, left.Y * right);
   }
   public static Vector operator -(Vector left, Point right)
   {
      return new Vector(left.X - right.X, left.Y - right.Y);
   }

   internal void Negate()
   {
      X = -X;
      Y = -Y;
   }

   internal void Normalize()
   {
      double factor = 1.0 / Math.Sqrt(LengthSquared);
      X *= factor;
      Y *= factor;
   }

   public double LengthSquared { get { return X * X + Y * Y; } }
}

Also had to address use of Length and +,- operators. I chose to just add functions to the FitCurves class, and rewrite their usages where the compiler complained.

  public static double Length(Point a, Point b)
  {
     double x = a.X-b.X;
     double y = a.Y-b.Y;
     return Math.Sqrt(x*x+y*y);
  }

  public static Point Add(Point a, Point b)
  {
     return new Point(a.X + b.X, a.Y + b.Y);
  }

  public static Point Subtract(Point a, Point b)
  {
     return new Point(a.X - b.X, a.Y - b.Y);
  }
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文