求解线性丢番图方程(参见示例说明)
让我首先澄清一下(在你们解雇我之前),这不是家庭作业问题,我也不是大学生。 :)
编辑 感谢@Klas 和其他人,我的问题现在归结为一个需要以编程方式解决的数学方程。
我正在寻找一种解决线性丢番图方程
的算法/代码。 对于像我这样的普通人来说,这样的方程如下所示:
示例 1:3x + 4y + 5z = 25
(查找 x、y、z 的所有可能值)
示例 2:10p + 5q + 6r + 11s = 224
(查找 p,q,r,s 的所有可能值)
示例 3:8p + 9q + 10r + 11s + 12t = 1012
(查找所有p、q、r、s、t 的可能值)
我尝试谷歌搜索但无济于事。我本以为已经编写了一些代码来解决这个问题。如果你们遇到过某种已经实现了这一点的图书馆,请告诉我。如果解决方案是用 Java 编写的,那么没有什么比这更酷的了!算法/伪代码也可以。非常感谢。
Let me start off by clarifying that(before you guys dismiss me), this is not a homework problem and I'm not a university student. :)
EDIT
Thanks to @Klas and others, my question now boils down to a mathematical equation which needs to be solved programmatically.
I'm looking for an algorithm/code which solves Linear Diophantine Equation
.
For lesser mortals like me, here's how such an equation looks like:
Example 1: 3x + 4y + 5z = 25
(find all possible values of x,y,z)
Example 2: 10p + 5q + 6r + 11s = 224
(find all possible values of p,q,r,s)
Example 3: 8p + 9q + 10r + 11s + 12t = 1012
(find all possible values of p,q,r,s,t)
I tried googling to no avail. I would have thought that some code would already be written to solve this. Do let me know if you guys have come across some kind of library which has already implemented this. And if the solution is in Java, nothing can be cooler!. Algorithm/pseudo code will also do. Thanks much.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(8)
暴力递归是一种选择,具体取决于您允许的值或值的数量达到多大。
假设:用户输入(被乘数)始终是不同的正整数。要找到的系数必须是非负整数。
算法:
Brute-force recursion is an option, depending on how large you will allow the value or number of values to become.
Assumptions: The user inputs (the multiplicands) are always distinct positive integers. The coefficients to be found must be non-negative integers.
Algorithm:
我碰巧为此编写了 Java 代码。请帮助自己。这些解决方案尚未经过广泛测试,但到目前为止似乎运行良好。
I happened to write Java code for this. Please help yourself. The solutions are not extensively tested, but it seems to work well so far.
这是一个数学问题,而不是一个编程问题。一旦有了合适的算法,实现它应该不会太难。
我建议你用谷歌搜索丢番图方程。
我找到了解释
This is a mathematical question rather than a programming one. Once you have a suitable algorithm, impelementing it shouldn't be too hard.
I suggest you google on Diophantine Equations.
I found an explanation for you.
添加克拉斯非常准确的答案:
摘自:Wolfram MathWorld
Adding on to Klas' very accurate answer:
taken from: Wolfram MathWorld
暴力算法如下(3 个变量的情况):
为了将其推广到 N 个变量的情况,您需要转换为递归形式。
对于某些函数
f
,该算法是O(f(size, a)^N)
。f
上设置界限:size / MaxValue(a) <= f(size, a) <= size / MinValue(a)
。a[i]
都是1
),f(size, a)
是size< /代码>。
无论哪种方式,对于较大的
N
值来说,这都是相当可怕的。因此,虽然递归 N 变量算法会更优雅,但它可能不太实用。如果您愿意向 Springer Verlag 支付 34 欧元,这里有一篇论文的链接,其中(根据摘要)包括解决 N 变量情况的算法。
A brute force algorithm is as follows (3 variable case):
To generalize this for the N variable case, you need to convert into a recursive form.
This algorithm is
O(f(size, a)^N)
for some functionf
.f
as follows:size / MaxValue(a) <= f(size, a) <= size / MinValue(a)
.a[i]
s are1
)f(size, a)
issize
.Either way, this is pretty horrendous for large values of
N
. So while the recursive N variable algorithm would be more elegant, it is probably not very practical.If you are willing to fork out 34 Euro's to Springer Verlag, here's a link to a paper which (according to the abstract) includes an algorithm for solving the N variable case.
要么没有解,要么有无限多个解。通常情况下,您有解决方案必须匹配的额外约束。您的问题是否属于这种情况?
让我们从最简单的情况开始,有两个未知数
a*x + b*y = c
:第一步是使用 欧几里得算法来求
a
和b
的GCD,我们称之为d
。作为奖励,该算法提供了x'
和y'
,使得a*x' + b*y' = d
。如果d
不能整除c
,则无解。否则,解决方案是:第二步,找到所有解决方案。这意味着我们必须找到所有
p
和q
,使得a*p + b*q = 0
。如果(x,y)
和(X, Y)
都是解,那么答案是
p = b/d
并且q = -a/d
其中d = GCD(a,b)
并且已在步骤 1 中计算出来。现在的通用解决方案是:其中 n 是整数。
第一步很容易扩展到多个变量。我不确定是否可以概括第二步。我的第一个猜测是找到所有系数对的解决方案并将这些解决方案组合起来。
There are either no, or infinitely many solutions. It is often the case that you have an extra constraint that the solution must match. Is this the case in your problem?
Let's start with the most simple situation where there are two unkowns
a*x + b*y = c
:The first step is using the Euclidean algorithm to find the GCD of
a
andb
, let's call itd
. As a bonus, the algorithm providesx'
andy'
such thata*x' + b*y' = d
. Ifd
doesn't dividec
, then there is no solution. Otherwise, a solution is:The second step is to find all solutions. This means we must find all
p
andq
such thata*p + b*q = 0
. For if both(x,y)
and(X, Y)
are solutions, thenThe answer to this is
p = b/d
andq = -a/d
whered = GCD(a,b)
and is already calculated in step 1. The general solution now is:where n is an integer.
The first step is easy to extend to multiple variables. I am not sure about generalizing the second step. My first guess would be to find a solution for all pairs of coefficients and combine these solutions.
这是 Perl 中的解决方案。而是使用正则表达式进行黑客攻击。
按照此博客帖子使用正则表达式求解代数方程。
我们可以使用以下脚本
输出 3x + 2y + 5z = 40: x=11, y = 1, z = 1
著名的 最古老的钢琴谜题最终是一个 3 变量方程
此方法适用于 条件变量实际上为正且常数为正。
This is a solution in Perl. rather a hack by using Regex.
Following this blog post to solve algebraic equations using regex.
we can use the following script for 3x + 2y + 5z = 40
output: x=11, y = 1, z = 1
the famous Oldest plays the piano puzzle ends up as a 3 variable equation
This method applies for a condition that the variables are actually positive and the constant is positive.
没有库可以执行此操作的原因类似于您找不到库来执行排列的原因 - 您生成了如此多的数据,这可能是错误的做法。
更准确地说,如果您有
n
个变量,其总和为X
,那么您将拥有O(Xn-1)答案。
X
和n
不必非常大,这也会成为问题。也就是说,这里有一些 Python 可以相当有效地计算出对答案进行编码的所有必要信息:
当我说“编码”时,数据结构如下所示。对于每个可能的系数,我们将获得一个
(coefficient, [subanswers])
数组。只要有可能,它就会重用子答案以使数据结构尽可能小。如果你不能,你可以递归地将其扩展回一系列答案,这样做会非常高效。 (事实上,它的复杂度为O(nX)
。)您只需很少的逻辑重复就能一遍又一遍地发现相同的事实。 (但是,返回的列表可能会变得非常大,因为要返回大量答案。)The reason why there is no library that does this is similar to why you won't find a library to do permutations - you generate so much data that this is probably the wrong thing to do.
More precisely, if you have
n
variables whose sum totalsX
, then you will haveO(Xn-1)
answers.X
andn
don't have to be very large for this to become an issue.That said, here is some Python that fairly efficiently figures out all of the necessary information to encode the answer:
When I say "encode", the data structure looks like this. For each possible coefficient, we'll get an array of
(coefficient, [subanswers])
. Whenever possible it reuses subanswers to make the data structure as small as possible. If you cant you can recursively expand this back out into an array of answers, and in so doing you'll be pretty efficient. (In fact it isO(nX)
.) You'll do very little repeating of logic to discover the same facts over and over again. (However the returned list may get very large simply because there is a large list of answers to be returned.)