从词频创建 ARFF
我有一些代码为我提供了单词列表以及它们在文本中出现的频率,我希望代码能够将前 10 个单词自动转换为带有
@RELATION wordfrequencies
@ATTRIBUTE word string 的 ARFF @ATTRIBUTE 频率数字
和前 10 个数据及其频率。
我正在努力思考如何用我当前的代码来做到这一点,
import re
import nltk
# Quran subset
filename = 'subsetQuran.txt'
# create list of lower case words
word_list = re.split('\s+', file(filename).read().lower())
print 'Words in text:', len(word_list)
word_list2 = [w.strip() for w in word_list if w.strip() not in nltk.corpus.stopwords.words('english')]
# create dictionary of word:frequency pairs
freq_dic = {}
# punctuation and numbers to be removed
punctuation = re.compile(r'[-.?!,":;()|0-9]')
for word in word_list2:
# remove punctuation marks
word = punctuation.sub("", word)
# form dictionary
try:
freq_dic[word] += 1
except:
freq_dic[word] = 1
print '-'*30
print "sorted by highest frequency first:"
# create list of (val, key) tuple pairs
freq_list2 = [(val, key) for key, val in freq_dic.items()]
# sort by val or frequency
freq_list2.sort(reverse=True)
freq_list3 = list(freq_list2)
# display result
for freq, word in freq_list2:
print word, freq
f = open("wordfreq.txt", "w")
f.write( str(freq_list3) )
f.close()
任何有关这方面的帮助都是值得赞赏的,这样做的一种方法真的是绞尽脑汁!
I have some code that gives me a list of words with their frequencies that they occur in the text, I'm looking to make it so the code converts the top 10 words automatically into an ARFF with
@RELATION wordfrequencies
@ATTRIBUTE word string
@ATTRIBUTE frequency numeric
and the top 10 as data with their frequency.
I'm struggling with how to do this with my current code
import re
import nltk
# Quran subset
filename = 'subsetQuran.txt'
# create list of lower case words
word_list = re.split('\s+', file(filename).read().lower())
print 'Words in text:', len(word_list)
word_list2 = [w.strip() for w in word_list if w.strip() not in nltk.corpus.stopwords.words('english')]
# create dictionary of word:frequency pairs
freq_dic = {}
# punctuation and numbers to be removed
punctuation = re.compile(r'[-.?!,":;()|0-9]')
for word in word_list2:
# remove punctuation marks
word = punctuation.sub("", word)
# form dictionary
try:
freq_dic[word] += 1
except:
freq_dic[word] = 1
print '-'*30
print "sorted by highest frequency first:"
# create list of (val, key) tuple pairs
freq_list2 = [(val, key) for key, val in freq_dic.items()]
# sort by val or frequency
freq_list2.sort(reverse=True)
freq_list3 = list(freq_list2)
# display result
for freq, word in freq_list2:
print word, freq
f = open("wordfreq.txt", "w")
f.write( str(freq_list3) )
f.close()
Any help with this is appreciated, a way of doing this is really racking my brain!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
我希望你不介意稍微重写一下:
I hope you don't mind the slight rewrite: