R:计算数据集子集的相关性?
我有一个包含 20 个变量 v1 - v20 的数据集。现在我想使用 cor(...) 计算 v2 和 v10 直到 v15 以及 v3 和 v10 直到 v15 之间的相关性。最好的方法是什么?我是否必须使用
cor(v2, v10)
cor(v2, v11)
cor(v2, v12)
and so on?
以下是实际数据集对每个变量对执行此操作:
> dput(dataset)
structure(list(Number = 1:15, Question.1.1 = c(3L, 4L, 5L, 5L,
4L, 5L, 5L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L), Question.1.2 = c(1L,
2L, 1L, 1L, 4L, 1L, 1L, 2L, 3L, 1L, 1L, 1L, 1L, 1L, 1L), Question.2.1 = c(5L,
3L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L), Question.2.2 = c(2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), Question.3.1 = c(2L,
NA, 4L, 5L, 4L, 3L, 5L, 3L, 5L, 5L, 5L, 5L, 4L, 4L, 4L), Question.3.2 = c(2L,
NA, 1L, 1L, 2L, 2L, 1L, 4L, 3L, 1L, 1L, 1L, 2L, 2L, 1L), Question.4.1 = c(3L,
2L, 5L, 2L, 5L, 5L, 5L, 3L, 5L, 5L, 5L, 5L, 4L, 5L, 2L), Question.4.2 = c(2L,
2L, 1L, 2L, 2L, 1L, 2L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 4L), Question.5.1 = c(5L,
3L, 5L, 3L, 4L, 4L, 5L, 3L, 5L, 5L, 5L, 5L, 5L, 4L, 4L), Question.5.2 = c(2L,
2L, 1L, 1L, 3L, 2L, 1L, 3L, 4L, 1L, 1L, 1L, 1L, 1L, 1L), Question.6.1 = c(5L,
2L, 2L, 2L, 3L, 2L, 3L, 1L, 3L, 3L, 5L, 4L, 3L, 3L, 1L), Question.6.2 = c(2L,
3L, 2L, 1L, 2L, 3L, 3L, 3L, 3L, 2L, 1L, 1L, 2L, 2L, 1L), Question.7.1 = c(5L,
2L, 5L, 5L, 5L, 3L, 5L, 5L, 2L, 4L, 5L, 5L, 5L, 4L, 5L), Question.7.2 = c(1L,
4L, 1L, 1L, 2L, 2L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 1L), Question.8.1 = c(4L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L), Question.8.2 = c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), Question.9.1 = c(5L,
3L, 5L, 4L, 4L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 5L, 4L, 3L), Question.9.2 = c(1L,
1L, 1L, 2L, 2L, 1L, 2L, 1L, 4L, 2L, 1L, 2L, 2L, 1L, 2L), AQ.1 = c(5L,
5L, 5L, 1L, 3L, 5L, 5L, 5L, 5L, 2L, 2L, 2L, 5L, 5L, 3L), AQ.2 = c(2L,
5L, 2L, 1L, 2L, 5L, 2L, 1L, 5L, 1L, 1L, 4L, 2L, 3L, 3L), Task.1 = c(5L,
2L, 5L, 1L, 4L, 5L, 5L, 4L, 4L, 5L, 5L, 4L, 5L, 5L, 5L), Task.2 = c(4L,
3L, 5L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L), Task.3 = c(4L,
3L, 4L, 1L, 3L, 5L, 4L, 5L, 5L, 5L, 5L, 5L, 4L, 4L, 4L), Task.4 = c(5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L), Task.5 = c(5L,
4L, 5L, 4L, 4L, 5L, 4L, 5L, 4L, 5L, 5L, 5L, 5L, 5L, 4L), GQ.1 = c(4L,
2L, 2L, 5L, 4L, 4L, 5L, 4L, 5L, 5L, 5L, 4L, 4L, 5L, 4L), GQ.2 = c(4L,
4L, 4L, 5L, 5L, 4L, 4L, 3L, 3L, 3L, 5L, 5L, 5L, 4L, 3L), GQ.3 = c(5L,
3L, 2L, 5L, 3L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 4L, 4L, 4L), GQ.4 = c(5L,
2L, 1L, 4L, 4L, 4L, 4L, 3L, 3L, 3L, 5L, 5L, 4L, 4L, 1L), GQ.5 = c(4L,
3L, 4L, 5L, 5L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 4L, 3L), GQ.6 = c(2L,
2L, 1L, 1L, 2L, 1L, 4L, 1L, 4L, 5L, 5L, 1L, 5L, 1L, 5L), GQ.7 = c(4L,
5L, 5L, 5L, 4L, 2L, 3L, 5L, 3L, 5L, 5L, 2L, 5L, 3L, 2L), GQ.8 = c(2L,
4L, 3L, 2L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L), GQ.9 = c(3L,
5L, 2L, 3L, 4L, 4L, 5L, 3L, 4L, 4L, 3L, 3L, 4L, 2L, 2L), GQ.10 = c(3L,
4L, 1L, 2L, 3L, 4L, 5L, 5L, 5L, 5L, 4L, 4L, 5L, 5L, 2L), Feature.1 = c(4L,
4L, 2L, 3L, 4L, 4L, 5L, 5L, 4L, 5L, 5L, 4L, 5L, 3L, 4L), Feature.2 = c(4L,
4L, 2L, 1L, 5L, 4L, 5L, 5L, 5L, 4L, 4L, 3L, 5L, 3L, 2L), Feature.3 = c(3L,
2L, 1L, 2L, 5L, 5L, 2L, 4L, 2L, 4L, 4L, 5L, 2L, 4L, 2L), Feature.4 = c(3L,
3L, 3L, 4L, 3L, 4L, 5L, 5L, 4L, 4L, 4L, 3L, 4L, 3L, 3L), Feature.5 = c(2L,
2L, 3L, 3L, 4L, 3L, 4L, 4L, 2L, 4L, 3L, 4L, 5L, 3L, 1L), Feature.6 = c(5L,
5L, 1L, 1L, 5L, 5L, 5L, 4L, 4L, 5L, 5L, 5L, 5L, 4L, 4L), Feature.7 = c(5L,
3L, 2L, 5L, 4L, 5L, 3L, 5L, 4L, 5L, 5L, 5L, 5L, 4L, 4L)), .Names = c("Number",
"Question.1.1", "Question.1.2", "Question.2.1", "Question.2.2",
"Question.3.1", "Question.3.2", "Question.4.1", "Question.4.2",
"Question.5.1", "Question.5.2", "Question.6.1", "Question.6.2",
"Question.7.1", "Question.7.2", "Question.8.1", "Question.8.2",
"Question.9.1", "Question.9.2", "AQ.1", "AQ.2", "Task.1", "Task.2",
"Task.3", "Task.4", "Task.5", "GQ.1", "GQ.2", "GQ.3", "GQ.4",
"GQ.5", "GQ.6", "GQ.7", "GQ.8", "GQ.9", "GQ.10", "Feature.1",
"Feature.2", "Feature.3", "Feature.4", "Feature.5", "Feature.6",
"Feature.7"), class = "data.frame", row.names = c(NA, -15L))
I have a dataset with 20 variables v1 - v20. Now I'd like to use cor(...) to calculate the correlation between v2 and v10 until v15 and v3 and v10 until v15. What's the best way to do this? Do I have to do this for each variable pair using
cor(v2, v10)
cor(v2, v11)
cor(v2, v12)
and so on?
Here is the actual dataset:
> dput(dataset)
structure(list(Number = 1:15, Question.1.1 = c(3L, 4L, 5L, 5L,
4L, 5L, 5L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L), Question.1.2 = c(1L,
2L, 1L, 1L, 4L, 1L, 1L, 2L, 3L, 1L, 1L, 1L, 1L, 1L, 1L), Question.2.1 = c(5L,
3L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L), Question.2.2 = c(2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), Question.3.1 = c(2L,
NA, 4L, 5L, 4L, 3L, 5L, 3L, 5L, 5L, 5L, 5L, 4L, 4L, 4L), Question.3.2 = c(2L,
NA, 1L, 1L, 2L, 2L, 1L, 4L, 3L, 1L, 1L, 1L, 2L, 2L, 1L), Question.4.1 = c(3L,
2L, 5L, 2L, 5L, 5L, 5L, 3L, 5L, 5L, 5L, 5L, 4L, 5L, 2L), Question.4.2 = c(2L,
2L, 1L, 2L, 2L, 1L, 2L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 4L), Question.5.1 = c(5L,
3L, 5L, 3L, 4L, 4L, 5L, 3L, 5L, 5L, 5L, 5L, 5L, 4L, 4L), Question.5.2 = c(2L,
2L, 1L, 1L, 3L, 2L, 1L, 3L, 4L, 1L, 1L, 1L, 1L, 1L, 1L), Question.6.1 = c(5L,
2L, 2L, 2L, 3L, 2L, 3L, 1L, 3L, 3L, 5L, 4L, 3L, 3L, 1L), Question.6.2 = c(2L,
3L, 2L, 1L, 2L, 3L, 3L, 3L, 3L, 2L, 1L, 1L, 2L, 2L, 1L), Question.7.1 = c(5L,
2L, 5L, 5L, 5L, 3L, 5L, 5L, 2L, 4L, 5L, 5L, 5L, 4L, 5L), Question.7.2 = c(1L,
4L, 1L, 1L, 2L, 2L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 1L), Question.8.1 = c(4L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L), Question.8.2 = c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), Question.9.1 = c(5L,
3L, 5L, 4L, 4L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 5L, 4L, 3L), Question.9.2 = c(1L,
1L, 1L, 2L, 2L, 1L, 2L, 1L, 4L, 2L, 1L, 2L, 2L, 1L, 2L), AQ.1 = c(5L,
5L, 5L, 1L, 3L, 5L, 5L, 5L, 5L, 2L, 2L, 2L, 5L, 5L, 3L), AQ.2 = c(2L,
5L, 2L, 1L, 2L, 5L, 2L, 1L, 5L, 1L, 1L, 4L, 2L, 3L, 3L), Task.1 = c(5L,
2L, 5L, 1L, 4L, 5L, 5L, 4L, 4L, 5L, 5L, 4L, 5L, 5L, 5L), Task.2 = c(4L,
3L, 5L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L), Task.3 = c(4L,
3L, 4L, 1L, 3L, 5L, 4L, 5L, 5L, 5L, 5L, 5L, 4L, 4L, 4L), Task.4 = c(5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L), Task.5 = c(5L,
4L, 5L, 4L, 4L, 5L, 4L, 5L, 4L, 5L, 5L, 5L, 5L, 5L, 4L), GQ.1 = c(4L,
2L, 2L, 5L, 4L, 4L, 5L, 4L, 5L, 5L, 5L, 4L, 4L, 5L, 4L), GQ.2 = c(4L,
4L, 4L, 5L, 5L, 4L, 4L, 3L, 3L, 3L, 5L, 5L, 5L, 4L, 3L), GQ.3 = c(5L,
3L, 2L, 5L, 3L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 4L, 4L, 4L), GQ.4 = c(5L,
2L, 1L, 4L, 4L, 4L, 4L, 3L, 3L, 3L, 5L, 5L, 4L, 4L, 1L), GQ.5 = c(4L,
3L, 4L, 5L, 5L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 4L, 3L), GQ.6 = c(2L,
2L, 1L, 1L, 2L, 1L, 4L, 1L, 4L, 5L, 5L, 1L, 5L, 1L, 5L), GQ.7 = c(4L,
5L, 5L, 5L, 4L, 2L, 3L, 5L, 3L, 5L, 5L, 2L, 5L, 3L, 2L), GQ.8 = c(2L,
4L, 3L, 2L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L), GQ.9 = c(3L,
5L, 2L, 3L, 4L, 4L, 5L, 3L, 4L, 4L, 3L, 3L, 4L, 2L, 2L), GQ.10 = c(3L,
4L, 1L, 2L, 3L, 4L, 5L, 5L, 5L, 5L, 4L, 4L, 5L, 5L, 2L), Feature.1 = c(4L,
4L, 2L, 3L, 4L, 4L, 5L, 5L, 4L, 5L, 5L, 4L, 5L, 3L, 4L), Feature.2 = c(4L,
4L, 2L, 1L, 5L, 4L, 5L, 5L, 5L, 4L, 4L, 3L, 5L, 3L, 2L), Feature.3 = c(3L,
2L, 1L, 2L, 5L, 5L, 2L, 4L, 2L, 4L, 4L, 5L, 2L, 4L, 2L), Feature.4 = c(3L,
3L, 3L, 4L, 3L, 4L, 5L, 5L, 4L, 4L, 4L, 3L, 4L, 3L, 3L), Feature.5 = c(2L,
2L, 3L, 3L, 4L, 3L, 4L, 4L, 2L, 4L, 3L, 4L, 5L, 3L, 1L), Feature.6 = c(5L,
5L, 1L, 1L, 5L, 5L, 5L, 4L, 4L, 5L, 5L, 5L, 5L, 4L, 4L), Feature.7 = c(5L,
3L, 2L, 5L, 4L, 5L, 3L, 5L, 4L, 5L, 5L, 5L, 5L, 4L, 4L)), .Names = c("Number",
"Question.1.1", "Question.1.2", "Question.2.1", "Question.2.2",
"Question.3.1", "Question.3.2", "Question.4.1", "Question.4.2",
"Question.5.1", "Question.5.2", "Question.6.1", "Question.6.2",
"Question.7.1", "Question.7.2", "Question.8.1", "Question.8.2",
"Question.9.1", "Question.9.2", "AQ.1", "AQ.2", "Task.1", "Task.2",
"Task.3", "Task.4", "Task.5", "GQ.1", "GQ.2", "GQ.3", "GQ.4",
"GQ.5", "GQ.6", "GQ.7", "GQ.8", "GQ.9", "GQ.10", "Feature.1",
"Feature.2", "Feature.3", "Feature.4", "Feature.5", "Feature.6",
"Feature.7"), class = "data.frame", row.names = c(NA, -15L))
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(4)
我可能误解了这个问题......但你为什么不在数据框上运行
cor
呢?例如:
如果您只需要某些相关值,您甚至可以
将 corr 的结果放入变量中并提取您需要的结果。
例如,我们想要第 2 列与第 5 至 10 列的相关性,我们将:
I may have misunderstood the problem... but why don't you just to run
cor
on the data frame?For instance:
You can even
If you just need certain values of correlations just put the result of corr in a variable and pull out the results you need.
For instance, we want the correlation of column 2 with columns 5 to 10 we will:
显式对数据集进行子集化并在该数据集上运行相关命令。假设您的变量排序正确,请尝试如下操作:
如果它们未排序,您只需对它们进行排序或用引号命名变量即可。例如:
Subset the dataset explicitly and run the correlation command on that dataset. Assuming your variables are ordered properly, try something like this:
If they are not ordered, you'll just need to order them or name the variables in quotes instead. E.g.:
使用
subset
命令:或者使用
psych
包和corr.test
函数:Use
subset
command:Or use
psych
package andcorr.test
function:这个问题似乎是由在整个数据帧上运行 corr 导致的信息过载引起的。我没有太多使用它,但 ggplot 成名的 Hadley Wickham 的 plyr 包 似乎提供了一些优雅的解决方案子集化和管理输出。
The question seems motivated by the information overload that results from running corr on the entire dataframe. I have not used it much but the plyr package by Hadley Wickham of ggplot fame seems to offer some elegant solutions to subsetting and managing the output.